EMERGÊNCIA DE PLÂNTULAS DE GOIABEIRA COM TRATAMENTOS PRÉ GERMINATIVOS NA SEMENTE

EMERGENCY OF GOIAB SEEDLINGS WITH PRE-GERMINATION TREATMENTS IN THE SEED

<u>Isaque Barbosa Francisco</u>¹; Virgínia Campos de Oliveira²; Thiago Gratz Spinasse³; Igor Mageski Fadini⁴; Marcus Vinicius Sandoval Paixão ⁵

INTRODUÇÃO

A goiabeira, *Psidium guajava*, tem origem nas regiões tropicais da América, podendo ser encontrada desde o México até o Brasil. Pertencente à família Mirtácea, sendo a sua propagação por semente, estaquia, enxertia e micropropagação.

Existem muitos estudos de formas de propagação com vistas a melhoria da emergência e o desenvolvimento das mudas no viveiro, de forma a acelerar e uniformizar o estabelecimento inicial das plântulas no campo, com tratamentos pré germinativos sendo o tratamento térmico, e o tratamento com giberelina que promovam a germinação, os mais utilizados para esta cultura (PAIXÃO, 2023).

O conhecimento das melhores condições para a emergência de plântulas, principalmente quanto à influência dos tratamentos pré-germinativos que promovam a germinação, é importante para à recomendação nas sementes de diferentes espécies, devido ao comportamento que cada semente apresenta.

A goiaba é uma das frutas tropicais mais populares e de maior aceitação no País, devido ao seu aroma e sabor característico. Possui alto valor nutritivo, com teores de vitamina C superiores aos encontrados em frutos cítricos (MANICA et al., 2000).

A utilização de hormônios que auxiliam na germinação tem sido citada em diversas pesquisas, e segundo Taiz e Zeiger (2013), tem a função de acelerar e melhorar a emergência de plântulas,

¹ Instituto Federal do Espírito Santo, Campus Santa Teresa, Rodovia Armando Martinelli, Km 22, Santa Teresa - ES, CEP: 29660.000, Brasil, isaquebars06@gmail.com Apresentador do trabalho.

² Instituto Federal do Espírito Santo, Campus Santa Teresa, Rodovia Armando Martinelli, Km 22, Santa Teresa - ES, CEP: 29660.000, Brasil, virginiacamposol@icloud.com

³ Instituto Federal do Espírito Santo, Campus Santa Teresa, Rodovia Armando Martinelli, Km 22, Santa Teresa - ES, CEP: 29660.000, Brasil, thiagogratz2606@gmail.com

⁴ Instituto Federal do Espírito Santo, Campus Santa Teresa, Rodovia Armando Martinelli, Km 22, Santa Teresa - ES, CEP: 29660.000, Brasil, igormagekifadini@gmail.com

⁵ Instituto Federal do Espírito Santo, Campus Santa Teresa, Rodovia Armando Martinelli, Km 22, Santa Teresa - ES, CEP: 29660.000, Brasil, mvspaixao@gmail.com

promovendo seu crescimento. Para estímulo a germinação, vários tratamentos podem ser utilizados, sendo a imersão em água pura ou soluções com hormônios são tratamentos que podem ser recomendados para acelerar a germinação e aumentar sua velocidade, melhorando a qualidade da muda (MENDONÇA et al., 2007).

A temperatura tem atuação direta na germinação das sementes e emergência das plântulas, afetando a velocidade de absorção de água pelas sementes, de forma a modificar o processo de germinação, a velocidade e a uniformidade de germinação (CASTRO; HILHORST, 2004).

A pesquisa foi realizada com o objetivo de avaliar a eficiência do tratamento pré-germinativo nas sementes na emergência de plântulas de goiabeira.

MATERIAL E MÉTODOS

O experimento foi conduzido no viveiro de produção de mudas, tela de poliolefina com 50% de sombreamento, altura de 2,3 m, setor de viveiricultura do Instituto Federal do Espírito Santo (IFES-Campus Santa Teresa), localizado na meso região Central Espírito-Santense, cidade de Santa Teresa-ES, distrito de São João de Petrópolis, coordenadas geográficas 19°56'12"S e 40°35'28"W, com altitude de 155 m. O clima da região caracteriza-se como Cwa, mesotérmico, com estação seca no inverno e forte pluviosidade no verão (classificação de Köppen) (ALVARES et al., 2013), com precipitação anual média de 1.404,2 mm e temperatura média anual de 19,9 °C, com máxima de 32,8 °C e mínima de 10,6 °C (INCAPER, 2011).

As sementes retiradas dos frutos colhidos no pomar do Campus Santa Teresa, CV Paluma, lavados e colocados para secar à sombra. Após a secagem das sementes, estas foram submetidas aos tratamentos com imersão por 30 minutos, sendo eles: água (testemunha); água com gelo (0°C); água fervente (100°C), água de coco e solução de giberelina a 2000 mg.L⁻¹.

O delineamento experimental foi delineamento em blocos casualizados com cinco tratamentos pré-germinativos e quatro repetições de 25 sementes cada, sendo a semeadura feita com uma semente por tubete (280 mL) e 25 tubetes por parcela.

A avaliação foi feita pela emergência das plântulas, onde após trinta dias da primeira plântula emergida avaliou-se a % de emergência (E), índice de velocidade de emergência (IVE) e tempo médio de emergência (TME).

Os dados experimentais foram submetidos à análise de variância pelo teste F, atendendo as pressuposições do modelo pelo teste de Shapiro-Wilk para verificação da normalidade e as médias dos tratamentos foram comparadas pelo teste Tukey em nível de 5% de probabilidade.

RESULTADOS E DISCUSSÃO

De acordo com a Tabela 1, observa-se que o tratamento pré germinativo submetendo às sementes à água com gelo (0°C) apresentou o melhor índice de emergência com diferença estatística para os outros tratamentos.

Na avaliação da velocidade de emergência, o tratamento pré germinativo submetendo às sementes à água com gelo (0°C) apresentou o melhor índice de velocidade de emergência, superior estatisticamente aos outros tratamentos (Tabela 1).

O mesmo pode ser visto para o tempo de emergência, onde o tratamento pré germinativo submetendo às sementes à água com gelo (0°C) apresentou o menor tempo de emergência, com superioridade estatística para os outros tratamentos (Tabela 1).

Tabela 1 – Emergência de plântulas de goiabeira com sementes submetidas a diferentes tratamentos pré germinativos

Tratamentos	Е	IVE	TME
Água	72 c	0,746 b	27,65 a
Ga3 2000 mg.L ⁻¹	75 b	0,747 b	27,99 a
0°C	81 a	0,883 a	25,39 b
Água de coco	75 b	0,739 b	27,83 a
100°C	0 b	0 b	0 b

Médias seguidas de mesma letra na coluna, para cada variável, não diferem entre si pelo teste de Tukey em 5% de probabilidade.

E= emergência das plântulas (%); IVE= índice de velocidade de emergência; TME= tempo médio de emergência.

Vieira et al. (2000), citam que o processo de dormência inviabiliza o embrião a germinar, e que quando as sementes são imersas em água, ou em solução de giberelina, estas pode voltar a desenvolver o processo germinativo ou ativar reservas energéticas das sementes que atuam durante a germinação. Nesta pesquisa, o estímulo não partiu de uma ação hormonal e sim térmica, sendo o estímulo por temperaturas baixas.

Castro e Hilhost (2004) citam que sementes pré-embebidas em água aceleram o processo germinativo e de acordo com Carvalho e Nakagawa (2000), o fornecimento de água promove a reidratação dos tecidos com aumento da respiração e de todas as outras atividades metabólicas. Neste caso a baixa temperatura foi importante na melhoria da reidratação das sementes, com aumento na emergência e com processo mais rápido de germinação.

Plantas de regiões tropicais, possuem maior resposta a métodos onde existe a exposição ao calor, sendo que tratamentos para a quebra de dormência devem imitar as condições ambientais que essas sementes estão expostas em seus locais de ocorrência natural (GARCIA; BASEGGIO, 1999). Muitas vezes a impermeabilidade da casca pode inibir a germinação, fazendo com que as plântulas não emergem, devendo esperar alguma ação que faça a quebra da dormência, ações que podem ser físicas ou mesmos térmicas.

CONCLUSÕES

O tratamento pré germinativo com utilização de água com gelo a 0°C nas sementes de goiaba teve ação positiva na emergência de plântulas de goiabeira, com maior índice de emergência em um menor tempo.

REFERÊNCIAS

ALVARES, C. A., STAPE, J. L., SENTELHAS, P. C., GONÇALVES, J. L. M.; SPAROVEK, G. Köppen's climate classification map for Brazil. **Meteorologische Zeitschrift**, v.22, n.6, p.711-728, 2013.

CARVALHO, N. M.; NAKAGAWA, J. **Sementes:** ciência, tecnologia e produção. 4 ed. Jaboticabal, SP: FUNEP, 2000. 125p.

CASTRO, R. D., HILHOST, H. W. M. Embebição e Reativação do metabolismo. In Ferreira, A. G., Borghetti, F. (eds). **Germinação do básico ao aplicado**. Porto Alegre: Artmed. 2004. p. 149-162.

GARCIA, É.N.; BASEGGIO, J. Poder germinativo de sementes de *Desmodium incanum* DC. (Leguminosae). **Revista Brasileira de Agrociência**, v.5, n.3, p.199-202, 1999.

INCAPER. **Planejamento e programação de ações para Santa Teresa.** Programa de assistência técnica e extensão rural PROATER, Secretaria de Agricultura, 2011. 62p.

MANICA, I.; ICUMA, I. M.; JUNQUEIRA, N. T. V.; SALVADOR, J. O., MOREIRA, A.; MALAVOLTA, E. **Fruticultura Tropical 6:** Goiaba. Porto Alegre: Cinco Continentes, 2000, 374p.

MENDONÇA, V.; RAMOS, J. D.; PIO, R.; GONTIJO, T. C. A.; TOSTA, M. S. Superação de dormência e profundidade de semeadura de sementes de gravioleira. **Caatinga**, v.20, n.2, p.73-78. 2007.

PAIXÃO, M. V. S. Propagação de plantas. 2.ed. Santa Teresa: IFES, 2023. 229 p.

TAVARES, D. V. L.; MARTINS, N. P.; BARROS, W. S.; SOUZA, L. C. D. Metodologia de Quebra de Dormência em Sementes de Sucupira-Branca. **Rev. Conexão Eletrônica**. Três Lagoas-MS, v.12, n.1, p. 01-09, 2015.

TAIZ, L.; ZEIGER, E. **Fisiologia e desenvolvimento vegetal**. Artmed editora, Porto Alegre. 2013. 918p.

TENENTE, R. C. V.; GONZAGA, V.; SOUSA, A. I.; SANTOS, D. S. Aplicação de tratamentos físicos e químicos em sementes de beterraba importada, na erradicação de *Ditylenchus dipsaci*. Circular Técnica, n.36. Brasília: Embrapa Recursos Genéticos e Biotecnologia, 2005. 8p.

VIEIRA, A R.; VIEIRA, M. G. G. C.; OLIVEIRA, J. A. Alterações fisiológicas e enzimáticas em sementes dormentes de arroz armazenadas em diferentes ambientes. **Revista Brasileira de Sementes**, v. 22, n. 2, p. 53-61. 2000.