

Green strategies against malaria and dengue: larvicidal, antiparasitic and antiviral potential of essential oils from *Piper* species

André C. de Oliveira¹, Ingrity Suellen C. Sá², Felipe Moura Araujo da Silva², Glenda Quaresma Ramos³, Rosemary Aparecida Roque¹, Gamilson Soares Pontes⁴, Sergio Massayoshi Nunomura⁵, Rita de Cássia Saraiva Nunomura²

¹ Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia, 69067-375, Manaus, Amazonas, Brasil

² Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, 69080-900, Manaus, Amazonas, Brasil

³ Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, 69065-001, Manaus, Amazonas, Brasil

⁴ Laboratório de Virologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Manaus, Amazonas, Brasil

⁵ Laboratório de Princípios Ativos da Amazônia, Instituto Nacional de Pesquisas da Amazônia, 69067-375, Manaus, Amazonas, Brasil
andrebiologo2011@gmail.com

Keywords: Piperaceae; Culicidae; arbovirus; *Plasmodium*

In Brazil, malaria and dengue are diseases caused by *Plasmodium* and DENV, respectively, and primarily transmitted by *Anopheles darlingi* and *Aedes aegypti*, mosquitoes that have developed resistance to insecticides often toxic to non-target organisms. As of May 2025, over 1,242,400 probable cases of dengue and 29,955 confirmed cases of malaria have been reported. In response, eco-friendly vector control strategies have increasingly focused on natural products from Amazonian plants, particularly *Piper* species. This study aimed to investigate the essential oils (EOs) and major compounds from *P. alatipetiolatum* as *P. purusanum* as potential agents against mosquito vectors and the etiologic agents of malaria and dengue. The EOs were extracted by hydrodistillation and characterized using GC-based techniques, while the major compounds were isolated and identified by column chromatography, MS, GC-MS, GC-FID, HPLC, and ¹H and ¹³C NMR. These products were evaluated against *An. darlingi* and *Ae. aegypti* larvae, *P. vivax*, and DENV. Toxicity was also assessed in non-target aquatic organisms, including Hemiptera, Coleoptera, and Diptera. All EOs and the compounds 6-ishwarone, ishwarol, ishwarane, β -caryophyllene and piplartine showed larvicidal activity (LC₅₀ from 29.31 to 40.76 μ g/mL), with cellular damage and changes in antioxidant enzymes such as SOD, CAT, GST, and α - and β -esterases. Antiparasitic (IC₅₀ from 3.7 to 11.2 μ g/mL) and antiviral (IC₅₀ from 5.8 to 13.24 μ g/mL) activities were also observed, with no cytotoxicity to VERO or PBMC cells. These products showed toxicity to non-target organisms only at high concentrations (LC₅₀ from 2,098.80 to 7,707.13 μ g/mL), indicating environmental safety. Thus, EOs and compounds from *P. alatipetiolatum* and *P. purusanum* may serve as eco-friendly alternatives for controlling mosquito vectors and the pathogens of malaria and dengue.

Support: FAPEAM, CNPq.