

Clove essential oil (*Syzygium aromaticum*) encapsulated in a lignin matrix for controlled release

Juliana de Araujo¹, Gabriel Fernandes Pauletti², Marli Camassola³

¹Graduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul, Brazil

²Plant-Environment Studies Laboratory – LESPA, University of Caxias do Sul, Caxias do Sul, Brazil

³Enzymes and Biomass Laboratory, Institute of Biotechnology – LENB, University of Caxias do Sul, Caxias do Sul, Brazil
gfpaulet@ucs.br

Keywords: biomaterials, encapsulation, volatile compounds.

Essential oils (EOs) are complex mixtures of naturally derived active compounds extracted from various terrestrial plants. Due to their volatile nature, these compounds readily evaporate under ambient conditions and are prone to oxidation when exposed to heat and sunlight¹. EOs exhibit a wide range of biological activities, including antioxidant, antimicrobial, antifungal, insecticidal, and anti-inflammatory properties^{2,3}. To preserve their functional properties, encapsulation in a polymeric matrix that serves as a physical barrier is an effective strategy. In this study, lignin was extracted via alkaline treatment from persimmon (*Diospyros kaki L.f.*) pruning residues (branches and leaves), offering a sustainable use of agro-industrial waste⁴, and clove essential oil (*Syzygium aromaticum*), which has antimicrobial, antioxidant, anti-inflammatory and insecticidal properties⁵. The EO was encapsulated using an antisolvent precipitation method, also referred to as micellization⁶. The resulting nanoparticles exhibited an average diameter of $346,47 \pm 11,55$ nm, a polydispersity index (PDI) of $0,05 \pm 0,03$, considered low for natural polymers (PDI $< 0,40$)⁷ and a zeta potential (ZP) of $-57,70 \pm 3,43$ mV, suggesting excellent colloidal stability (ZP < -30 mV)⁸. These findings demonstrate the technical feasibility of using lignin as a biodegradable and cost-effective carrier for the encapsulation and controlled release of clove essential oil. This system holds potential for various applications, including as a natural active agent in cosmetic and therapeutic formulations, or in agroindustrial settings for pest management.

1. Alamgir, A. N. M. Springer International Publishing, 2018, 2, 849 p.
2. Amaral, F. São Paulo: Cengage Learning, 2015. 235 p.
3. Vitti, A. M. S. and Brito, J. O. Documentos Florestais, 2003, 17, 1-26.
4. Mesquita, R. M. F. de. et al., International Journal of Biological Macromolecules. 2025, 306.
5. Kačániová et al., Plants. v. 10, 2021.
6. Schneider, W. D. H., Dillon, A. J. P., Camassola, M. Biotechnology Advances, 2021, 47.
7. Nemen, D. and Lemos-Senna, E. Química Nova. 2011, 34 (3), 408-413.
8. Fafat, Z. et al., Academic Press., 2023, 159-197.

Acknowledgments: We acknowledge the Coordination for the Improvement of Higher Education Personnel (CAPES), the University of Caxias do Sul (UCS), and the Graduate Program in Process Engineering and Technologies (PGEPROTEC) for their support.