

368 – PLANT INNATE IMMUNITY IN STRAWBERRY INDUCED BY PATHOGEN-**ASSOCIATED MOLECULAR PATTERN (PAMP)**

JOSÉ ABRAMO MARCHESE; VANESSA NATALINE TOMAZELI; SILVIA SCARIOTO; MARCOS VILYPALADINI; EMANUELI PEREIRA DA SILVA; LUCAS VINÍCIUS DALLACORTE

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ, PATO BRANCO-PR

INTRODUÇÃO

Gray mold caused by Botrytis cinerea is an important disease in strawberries. This fungus causes significant economic losses since it attacks plants and fruits. In this context, this work aimed to evaluate the effectiveness of Acibenzolar-S-methyl (ASM) and Harpin protein in pre- and post-harvest as inducers of resistance in strawberries to B. cinerea.

Table 1- Effect of Acibenzolar-S-methyl (ASM) and Harpin treatment (postharvest) on disease incidence, control efficiency and injured area in strawberry fruits (cv. Camarosa) inoculated with Botritis cinera.

Treatment	Disease incidence (%)	Injured area (cm ²)	Control efficiency	
Control	97.2 ± 3.11 a	1.37 ± 0.82 a	-*	
Harpin protein	51.4 ± 1.98 b	0.20 ± 0.17 b	67.36 ± 13.37	
Harpin αβ protein	63.9 ± 5.52 b	0.36 ± 0.29 b	81.85 ± 23.75	
ASM	63.9 ± 8.34 b	0.43 ± 0.21 b	68.85 ± 2.15	
Inoculation forms				
Wounded	70.8 ± 4.21 ^{ns}	0.64 ± 0.06	84.69 ± 20.12 ^{ns}	
		ns		
Mean Unawerly de d ame lett	ers if The Cotting and the not d	ifter 56m talen 1ther by	y = 60.76 + 20.5 + 10	
probability.				

METODOLOGIA

Strawberry plants (Fragaria x ananassa) from 'Aromas' and 'Camarosa' cultivars were grown in a greenhouse and evaluated in a laboratory. Two elicitors: four doses of Harpin [commercial product] ProAct[™] (0, 100, 200 and 300 mg L⁻¹, 1% a.i.)] and five doses of ASM [commercial product Bion® (0, 100, 200, 300, and 400 mg L⁻¹, 50% a.i.)] in pre- and post-harvest applications were assessed. Yield parameters of strawberry, B. cinerea incidence and injured area in fruit, fruit firmness, CO₂ assimilation rate, and phenylalanine ammonia-lyase (PAL) activity were analyzed.

RESULTADOS E CONCLUSÕES

Table 2- Effect of Acibenzolar-S-methyl (ASM) and Harpin treatment (postharvest) on pulp firmness and PAL activity in strawberry fruits (cv. Camarosa) inoculated with Botritis cinera.

Treatment	<mark>Pulp</mark> firmness (N)	PAL (Uabs min ⁻¹ mg protein ⁻¹ x 10 ³)		
Control	6.35 ± 2.51 b	5.54 ± 0.86 b		
Harpin protein	11.03 ± 2.46 a	6.17 ± 0.76 ab		
Harpin αβ protein	9.28 ± 3.48 ab	7.57 ± 0.73 a		
Acibenzolar-S- methyl	7.15 ± 2.23 ab	6.24 ± 1.08 ab		
Inoculation forms				
Wounded	7.16 ± 2.00 ^{ns}	6.21 ± 0.96 ^{ns}		
Unwounded	9.76 ± 3.84	6.55 ± 1.25		

Means followed by the same letters in the columns do not differ from each other by the Tukey test at a 5% probability.

Fig. 2 - Visual comparison of rot in strawberry fruits treated with Acibenzolar-S-methyl (ASM) (a), Harpin $\alpha\beta$ (b), Harpin (c), and the control treatment (d)

Elicitors application in pre- and post-harvest

∿N (µmol m

Fig. 1 Number of marketable fruits per plant (MFP) (a), mass of marketable fruits per plant (MMFP) (b), average mass of marketable fruits (AMF) (c), net photosynthesis (A) 24 h before (d) and after (e) the treatment (cv. Aromas), and fruit yield (FY) (f) of strawberry plants according to the application of Acibenzolar-S-Methyl (ActiGard®) and Harpin $\alpha\beta$ (ProActTM). The black bars represent the standard deviation

conditions promoted a decrease of *B.cinerea* incidence and injured area in strawberry fruits. The results suggest that Harpin and ASM treatment show a significant impact on strawberry fruit disease, presenting a potencial use to increase post-harvest storage. The control may be associated with the PAL induction, responsible for inducing defense responses. Harpin and ASM represent a promising alternative to synthetic fungicides for *B. cinerea* control during postharvest storage.

AGRADECIMENTOS **R**CNPq syngenta PPGAG CAPES