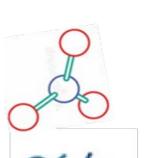


118. INOCULAÇÃO DE *AZOSPIRILLUM BRASILENSE IN VITRO* E *IN VIVO* BENEFICIA A BIOTIZAÇÃO, SOBREVIVÊNCIA E PRODUÇÃO DE BATATA (SOLANUM TUBEROSUM L.)

Yulimar Castro Molina^{1,2}, Joyce Dória Ródrigues³, Ana Milena Gómez Sepúlveda¹, Luna Queiroz Carvalho³, Moacir Pasqual³, Ederson da Conceição Jesus⁴


¹Departamento de Biologia, Universidade Federal de Lavras, Brasil, ²Departamento de Biologia, Universidade dos Andes, Venezuela, ³Departamento de Agricultura, Universidade Federal de Lavras, Brasil, ⁴Embrapa Agrobiologia, Seropédica RJ

INTRODUÇÃO

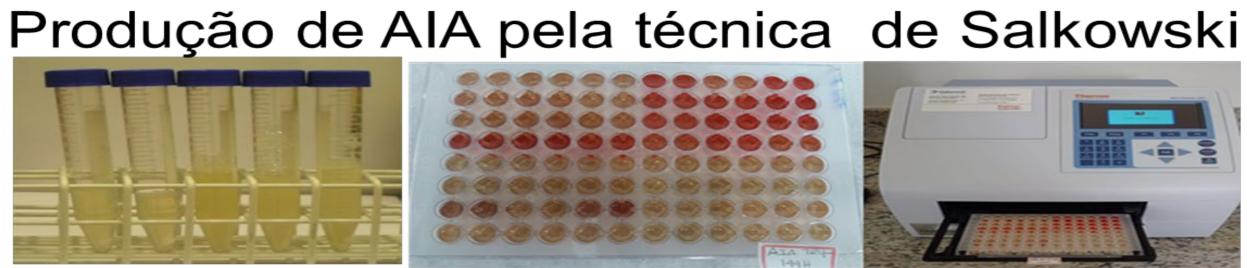
Bactérias que interagem de forma positiva e trazem benefícios para a planta são conhecidas como bactérias promotoras do crescimento vegetal (BPCV). As BPCV podem sintetizar fitohormônios e vários outros compostos orgânicos que podem melhorar o crescimento e a produtividade das plantas (Maggini et al., 2019). No caso de cultura de tecidos in vitro as BPCV parecem ter um efeito benéfico quando são introduzidas no sistema de cultura de tecidos, aumentando as taxas multiplicação, alongamento de brotos enraizamento, bem como melhorando a eficácia da micropropagação a traves do sucesso na fase de aclimatização (Somaure et al 2021).

Mecanismos de ação das BPCV

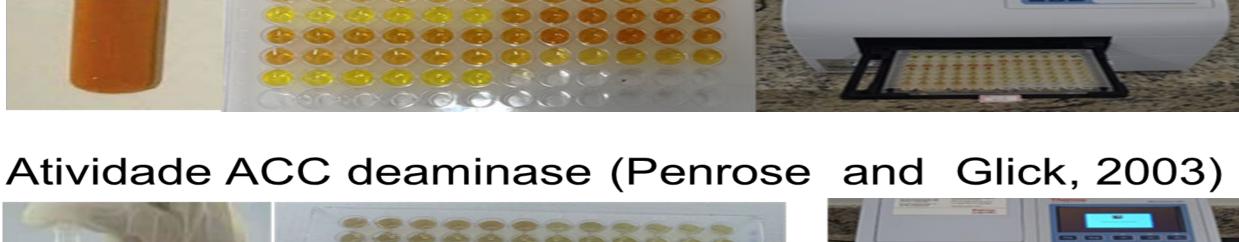
Fixação de N2

Produção de fitohormônios

Produção de EPS

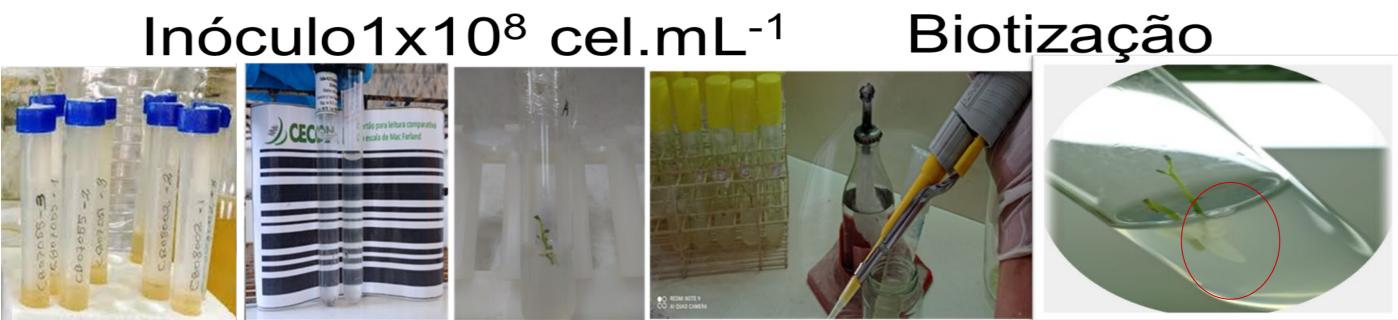

00

Atividade ACC deaminase


METODOLOGIA

1. Bactérias, condições de crescimento e caracterização bioquímica.

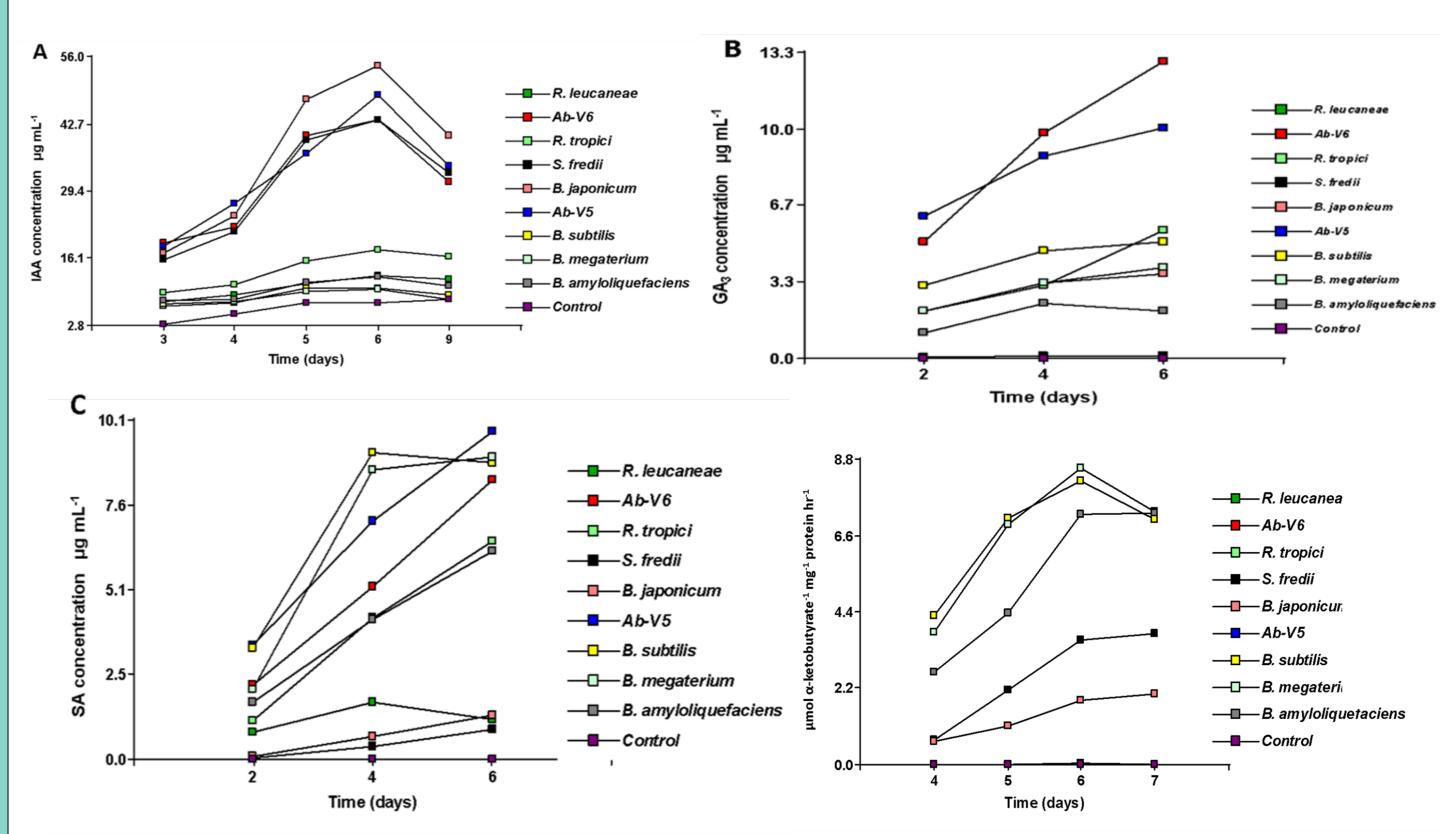
Gênero e espécie	Estirpe	Origem geográfico	-
Rhizobium leucaneae	-	Cipó-BA, Brasil	
Azospirillum brasilense	Ab-V6	Curitiba-PR, Brasil	Caldo nutritivo /Conservação glicerol 40%
Azospirillum brasilense	Ab-V5	Curitiba-PR, Brasil	
Bradyrhizobium japonicum	-	Arcos-MG, Brasil	
Sinorhizobium fredii	-	Luminárias-MG, Brasil	
Rhizobium tropici	-	Colombia	
Bacillus subtilis	-	Alto Garças-MT, Brasil	
Bacillus megaterium	-	Confresa-MT, Brasil	
Bacillus amyloliquefaciens	-	Luminárias-MG, Brasil	
D . ~		A I A I	_ , , , , , , , , , , , , , , , , , , ,



2. Material vegetal

Estabelecimento de cultivo in vitro das duas cultivares de batata cv Duvira e Ágata.

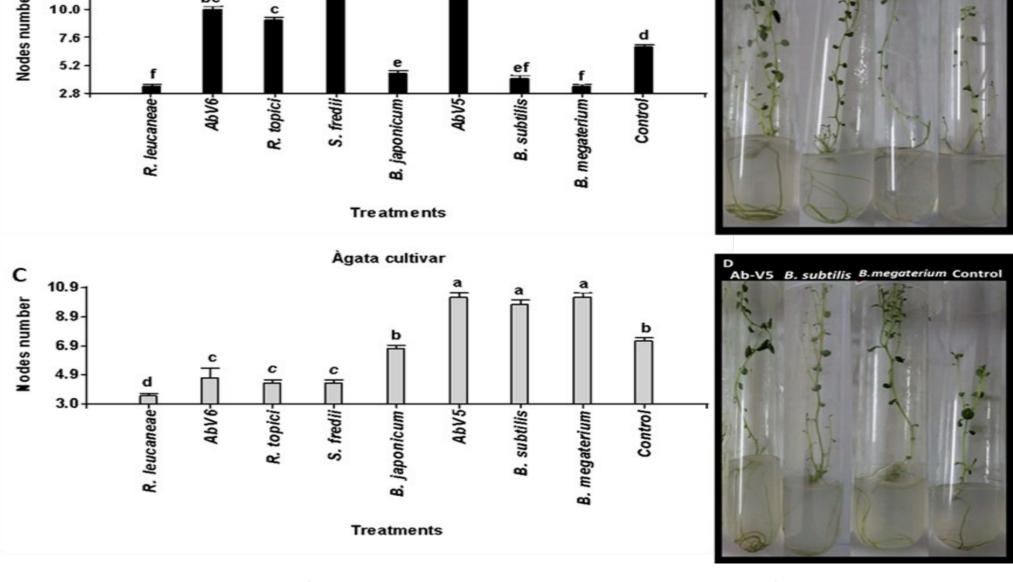
3. Preparação de inoculantes e biotização



Transplante e aclimatização

RESULTADOS E CONCLUSÕES

1. Caracterização bioquímica das BPCV Produção AIA, GA₃, AS e ACC deaminase



2. Efeito da biotização nos parâmetros de crescimento da batata cv. Duvira e Ágata, avaliada após de 30 dias em condições *in vitro*.

<i>In vitro</i> Duvira cultivar	Lengh	nt (cm)	Dry weight (mg)		
Treatments	Shoot	Root	Shoot	Root	Total biom ass
R. leucaneae	3.6 ± 0.1e	1.3 ± 0.1ef	10,0 ± 0.0d	0.0 ± 0.0^{d}	10,0 ^d
Ab-V6	8.3 ± 0.1c	4.1 ± 0.1a	30.0 ± 0.0°	10.0 ± 0.0de	40,1 ^{cd}
R. tropici	7.7 ± 0.1 ^c	3.3 ± 0.1bc	110.0 ± 0.0 ^b	50.1 ± 0.0 ^b	160,1 ^b
S. fredii	10.8 ± 0.1b	4.3 ± 0.1a	130.0 ± 0.0ab	110.0 ± 0.0a	240,1ab
B. japonicum	5.7 ± 0.1 ^d	3.3 ± 0.1bc	20.0 ± 0.0°	10.0 ± 0.0^{d}	30,0°
Ab-V5	12.3 ± 0.1a	4.1 ± 0.1 ^a	150.0 ± 0.0 ^a	110.0 ± 0.0a	260,0ª
B. subtilis	3,8 ± 0.1e	2.0 ± 0.1 ^{de}	10.0 ± 0.0d	10.0 ± 0.0d	20,1 ^d
B. megaterium	3.3 ± 0.1e	2.1 ± 0.1d	30.0 ± 0.0°	0.0 ± 0.0^{d}	30,0c
Control	7.2 ± 0.1 ^d	3.1 ± 0.1c	40.0 ± 0.0°	30.1 ± 0.0°	70,1°

<i>In vitro</i> Ágata cultivar	Lenght (cm)		Dry weight (mg)		
Treatments	Shoot	Root	Shoot	Root	Total biom ass
R. leucaneae	3.8 ± 0.1 ^f	1.5 ± 0.1e	20.0 ± 0.0°	0.0 ± 0.0 ^{de}	20,0°
Ab-V6	3.3 ± 0.1 ^f	1.9 ± 0.1°	10.0 ± 0.0°	0.0 ± 0.0 ^{cde}	10,0c
R. tropici	6,8 ± 0.1d	3.9 ± 0.1c	90.0 ± 0.0 ^b	50.0 ± 0.0b	140,0b
S. fredii	6.5 ± 0.1 ^d	3.9 ± 0.1°	10.0 ± 0.0°	0.00 ± 0.0^{e}	10,0°
B. japonicum	10.6 ± 0.1c	5.1 ± 0.1 ^b	110.0 ± 0.0 ^b	50.0 ± 0.0^{b}	160,0b
Ab-V5	12.5 ± 0.1a	6.9 ± 0.1a	140.0 ± 0.0a	110.0 ± 0.0 ^a	250,0ª
B. subtilis	11.8 ± 0.1 ^b	3.6 ± 0.1 ^c	110.0 ± 0.0ab	50.0 ± 0.0 ^b	160,0ªb
B. megaterium	12.0 ± 0.1ab	6.4 ± 0.1a	120.0 ± 0.0ab	80.0 ± 0.0ab	200,0at
Control	10.1 ± 0.1c	3.6 ± 0.1c	$30.0 \pm 0.0^{\circ}$	30.0 ± 0.0^{cde}	60°

Efeito da biotização no número de nós

Porcentagem de sobrevivência

8. Se provivência

Cultiv ar Duviva

Cultiv ar Ágata

Treatments

Efeito da biotização na formação e peso dos tubérculos

A 6.60 DUNITA CURITIVAT Agata CURITIVAT OUTO A GARDA CURITIVA CURIT

A biotização com BPCV melhora o desenvolvimento das microplantas e, portanto, pode ser exploradas para aumentar a sobrevivência e o desenvolvimento da batata in vitro, além de melhorar sua adaptação in vivo..

Mesmo que a resposta das microplantas de batata à inoculação seja altamente variável tanto *in vitro* como *in vivo*, verificou-se que a inoculação com cepas do gênero *Azospirillum*, *Bacillus*, *Sinorhizobium* e *Bradyrhizobium* aumenta a eficácia da micropropagação clonal de batata e permite a produção de mudas de maior qualidade.

A cepa *A. brasilense* Ab-V5 destacou-se com resultados promissores, favorecendo a produção de tubérculos.

AGRADECIMENTOS

