

XXIII Congresso Brasileiro de Ciência e Tecnologia de Alimentos

ISBN 978-85-89983-04-4

MECANISMO DE INIBIÇÃO DE Fusarium graminearum POR COMPOSTOS FENÓLICOS EXTRAÍDOS DE Spirulina sp.

Pagnussatt, F.A.¹, Darley, F.T.², Filoda, P.F.², Kupski, L¹., Garda-Buffon, J.¹, Badiale-Furlong, E.¹

A aplicação de substâncias naturais com efeito antifúngico é motivada pela necessidade de alternativas aos métodos existentes que nem sempre são aplicáveis, eficientes ou sem risco de danos ao consumidor ou meio ambiente. Assim, verificar o mecanismo de inibição da multiplicação fúngica a partir de extratos fenólicos da microalga e de ácido gálico comercial foram objeto deste estudo. A Spirulina sp. LEB-18 foi cultivada no RS/Brasil com água da Lagoa Mangueira e a biomassa coletada, seca e moída para extração metanólica e quantificação dos compostos fenólicos totais. Os testes de inibição fúngica foram conduzidos em presença do extrato fenólico (EF), ácido gálico (AG) e o controle sem adição destes compostos. As placas contendo agar-batata-dextrose (ABD), EF ou AG na concentração de 1500 µg placa⁻¹, foram inoculadas com solução de esporos 4 x 10⁵ esporos mL-1 de Fusarium graminearum CQ 244 durante 13 dias. A atividade antifúngica foi avaliada através dos índices de glicosamina, amilase e protease. Os resultados de inibição da parede celular do fungo, obtidos pelo teor de glicosamina evidenciaram que até o 7º dia a multiplicação foi inibida em 50% com EF e 80% com AG, constituinte majoritário de ácidos fenólicos encontrados na microalga e precursor do metabolismo fúngico. Quanto à inibição da atividade enzimática, EF foi mais eficiente que AG, inibindo 81% a ação da amilase até o 10° dia e a protease foi inibida em 5% até o 5° dia. Portanto, a utilização de extrato fenólico bruto de Spirulina sp. foi promissora para a inibição da multiplicação fúngica e inativação de sistemas enzimáticos de Fusarium graminearum. pois ocorre efeito sinergístico entre a inibição da parede celular e atividade de enzimas do metabolismo primário.

Agradecimentos: Rede Nanofotobiotec.

¹ Programa de Pós-Graduação em Engenharia e Ciência de Alimentos – Escola de Química e Alimentos – Universidade Federal do Rio Grande, Rio Grande do Sul, email: nandapagnu@terra.com.br.

² Curso de Engenharia de Alimentos – Escola de Química e Alimentos – Universidade Federal do Rio Grande, Rio Grande do Sul.