


Oct. 26-29th 2015

3D MOLECULAR MAPS OF THE HUMAN SKIN SURFACE

<u>Carla Porto</u>^{1,2}, Amina Bouslimani¹, Christopher M. Rath¹, Mingxun Wang³, Guo Yurong⁴, Antonio Gonzalez⁵, Donna Berg-Lyon⁵, Gail Ackermann⁵, Gitte Julie Moeller Christensen^{1,6}, Nakatsuji Teruaki⁷, Lingjuan Zhang⁷, Andrew Borkowski⁷, Michael Meehan¹, Kathleen Dorrestein¹, Richard Gallo⁷, Nuno Bandeira^{1,3,8}, Rob Knight^{3,4,5,8}, Theodore Alexandrov^{1,10,11,12}, Eduardo J. Pilau², Pieter C. Dorrestein^{1,13}.

¹Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA; ²Department of Chemistry, State University of Maringá, Maringá-PR, Brazil; ³Department of Computer Science and Engineering, University of California, San Diego; ⁴School of Medicine, University of California, San Diego; ⁵Department of Pediatrics, University of California San Diego; ⁶Department of Biomedicine Aarhus University, Aarhus C, Denmark; ⁷Division of Dermatology, University of California, San Diego; ⁸Center for Computational Mass Spectrometry, University of California, San Diego; ⁹Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, USA; ¹⁰Center for Industrial Mathematics, University of Bremen, Bremen, Germany. ¹¹SCiLS GmbH, Bremen, Germany; ¹²European Molecular Biology Laboratory, Heidelberg, Germany; ¹³Departments of Chemistry, Biochemistry and Pharmacology, University of California, San Diego, CA, USA. E-mail address: <u>cporto.silva@gmail.com</u>

Abstract: Here we explored the topographical body distribution of skin molecules and bacteria by spatial mapping of mass spectrometry (MS) and microbial DNA sequence data. The 3D topographical maps were constructed from samples collected at ~400 distinct body sites, from each of two volunteers, using a specific workflow (Figure 1). To better interpret the MS data, molecular networking was applied to MS/MS spectra. Compounds are grouped based on their MS/MS similarity serving as a proxy for structural similarity and visualized in Cytoscape. The generated maps revealed that the spatially localized chemical and microbial diversity on the skin are not only defined by microbes or skin cells and their interactions, but also by daily routines, including our hygiene habits, and use of beauty products. Our results highlighted that the chemical make-up of the outermost layer of the skin is highly individualized as the chemistry is defined by a person's lifestyle. A spatial bacterial and metabolite skin map thus provides insight into the molecular interrelations of humans and our microbiota, and reflects current and past individual behavior. These maps lay a foundation for further studies of the spatially-defined interactions of skin chemicals and microbiota and external environmental factors, with a potential for monitoring variations of skin chemicals and microbes and their influence on human health and susceptibility to disease [1].

Figure 1. General Workflow for Construction of High-Spatial Resolution 3D Models. The data analysis involved integrative analysis of heterogeneous big data followed up by structural biochemical analysis of molecular features of interest.

References: [1] Bouslimani, A.; Porto, C.; Rath, C. M.; Wang, M.; Guo, Y.; Gonzalez, A.; Berg-Lyon, D.; Ackermann, G.; Moeller Christensen, G. J.; Nakatsuji, T.; Zhang, L.; Borkowski, A. W.; Meehan, M. J.; Dorrestein, K.; Gallo, R. L.; Bandeira, N.; Knight, R.; Alexandrov, T.; Dorrestein, P. C. 2015. Molecular cartography of the human skin surface in 3D. Proc. Natl. Acad. Sci. USA, 112: E2120–E2129.