978-85-85564-27-8

05 e 06 de junho de 2013 - Ribeirão Preto SP

IMPLANTAÇÃO E AVALIAÇÃO PRELIMINAR DO BANCO ATIVO DE GERMOPLASMA DE MACAÚBA (*Acrocomia aculeata*) DO IAC/APTA LESTE PAULISTA

<u>Luiz Henrique Chorfi Berton¹</u>; Joaquim Adelino de Azevedo Filho²; Walter José Siqueira³; Carlos Augusto Colombo^{3,4}

RESUMO

A macaúba é uma palmeira nativa que se destaca entre as oleaginosas, devido sua produtividade, rusticidade e qualidade do óleo. Estudos com essa palmeira aumentaram consideravelmente nos últimos cinco anos dentre eles a caracterização genética e morfo-agronômica de plantas de populações nativas do estado de São Paulo. Para fins de melhoramento genético, a criação de bancos de germoplasma e avaliação de suas plantas são atividades prioritárias. Assim, o estudo teve como objetivo instalar um banco de germoplasma da macaúba e aferir as variáveis morfológicas dos acessos em fase juvenil através de medições dos caracteres biométricos de altura da planta, diâmetro do estipe, número de folhas, quantidade de espinhos no estipe e número de folhas, além de caracteres germinativos. O banco de germoplasma ativo é composto por 63 acessos de diferentes regiões do estado de São Paulo e algumas localidades de Minas Gerais. Obteve-se estimativas de variabilidade genética para todos os caracteres avaliados. bem como correlações genéticas que em sua maioria foram elevadas e positivas. A variabilidade genética observada pode ser explorada para fins de melhoramento da espécie.

Palavras-chave: diversidade; biodiesel; parâmetros genéticos; recursos genéticos.

ABSTRACT

The macaw palm is a native tree that stands out among oilseeds, because their productivity, hardiness and oil quality. Studies with this palm has increased considerably in the last five years among them genetic characterization and morphoagronomic plant native populations of the state of São Paulo. For breeding purposes, the establishment of germplasm banks and evaluation of their plants are priority activities. Thus, the study aimed to install a genebank macaw palm and assess morphological variables of hits in the juvenile phase through measurements of biometric characters of plant height, stem diameter, number of leaves, number of spines on the trunk and number leaves, and germinal characters. The germplasm bank asset consists of 63 accessions of different regions of the state of São Paulo and some towns of Minas Gerais. Obtained estimates of genetic variability for all traits and genetic correlations were mostly uplifting and positive. The genetic variability can be exploited for the improvement of the species.

Keywords: diversity; biodiesel; genetic parameters, genetic resources.

INTRODUÇÃO

Existe uma expectativa de produção e utilização de plantas oleaginosas perenes como fontes de matéria-prima, principalmente em países de clima tropical, abundantes em espécies de palmeiras, como no Brasil.

A macaúba *Acrocomia aculeata* (Jacq) Lodd. ex. Mart. (Arecaceae), palmeira nativa de ampla distribuição nas Américas Tropical e Subtropical, é reputada como ¹Doutorando – Genética, Melhoramento e Biotecnologia Vegetal, PG/IAC, bolsista Fapesp (14720-9). E-mail: lhcberton@gmail.com; ²Pesquisador Científico, APTA-Leste Paulista; ³Pesquisador Científico –IAC; ⁴Diretor do Centro de Recursos Genéticos Vegetais – IAC;

978-85-85564-27-8

05 e 06 de junho de 2013 - Ribeirão Preto SP

uma das principais alternativas para a produção de biocombustíveis, devido sua alta produtividade e rusticidade (Bandeira, 2008).

Bancos de Germoplasma são unidades conservadoras de material genético de uso imediato ou futuro. Eles visam à conservação da diversidade genética das espécies vegetais, especialmente daquelas de importância sócio-econômica que estejam ameaçadas pela erosão genética e ou que demandem ações para o melhoramento genético. Bancos ativos de germoplasma são aqueles que estão próximos ao pesquisador, nos quais ocorre o intercambio de germoplasma e que reúnem genótipos mais bem caracterizados e de maior interesse para fins de seleção pelo melhorista.

Assim, a criação de um banco ativo de germoplasma pressupõe a sua caracterização. Nos procedimentos de caracterização genética do banco ativo de germoplasma dados de diversas características agro-morfológicas são obitdos os quais permitem estimar parâmetros genéticos de interesse do melhorista, a exemplo de herdabilidades variadas.

Portanto o estudo teve por objetivo a criação de um banco ativo de germoplasma da espécie e caracterização da diversidade genética dos seus acessos na fase juvenil.

MATERIAL E MÉTODOS

O material do estudo foi representado por progênies de 63 acessos de macaúba selecionados em 23 populações naturais nos estados de São Paulo e Minas Gerais cujas plantas foram avaliadas ao longo de quatro anos (Figura 1). A caracterização baseou-se na morfologia da planta, produção e rendimento de lipídeos do fruto (Berton et al., 2012).

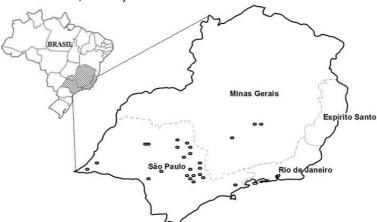


Figura 1: Populações naturais de macaúba avaliados pelo programa de melhoramento da espécie.

Sementes pré-germinadas dos 63 acessos foram transplantadas para tubetes até a emissão da primeira folha. Posteriormente as plântulas foram transplantadas para sacolas plásticas de 2,5 litros, permanecendo por cerca de oito meses em condições de viveiro.

Após esse período, os acessos foram plantados em campo no Polo Regional APTA-Leste Paulista, município de Monte Alegre do Sul, SP (Figura 2). O número de indivíduos por acesso variou de seis a 27. O espaçamento utilizado foi de 5x4m.

978-85-85564-27-8

05 e 06 de junho de 2013 - Ribeirão Preto SP

Todos os acessos receberam tratos culturais e adubação necessários à condução das plantas.

Para a caracterização inicial dos acessos, foi mensurada a altura da planta; número de folhas verdes; número de folhas secas; emissão de folhas; tamanho da folha; tamanho do caule, diâmetro do caule e quantidade de espinho na planta (0 = sem; 1= pouco; 2= médio; 3= muito).

De posse dos dados, realizou-se a análise de variância e teste de médias (Scott & Knott) pelo programa GENES (Cruz, 2006).

As estimativas dos coeficientes de correlação genotípica (*rG*), fenotípica (*rF*) e de ambiente (*rE*) foram obtidas mediante análises de covariâncias, combinando caracteres dois a dois (Cruz et al., 2004). Para diferenciação das grandezas das correlações, utilizou-se a classificação proposta por Shimakura & Ribeiro Junior (2006) sendo: 0,0 a 0,19 – muito fraca; de 0,20 a 0,39 – fraca; de 0,40 a 0,69 – moderada; de 0,70 a 0,89 – forte e de 0,90 a 1,00, muito forte.

Figura 2. Banco de Germoplasma de macaúba IAC/APTA Leste Paulista no município de Monte Alegre do Sul, SP. 2013.

RESULTADOS E DISCUSSÃO

Foi encontrada variação nas médias dos acessos para todas as sete variáveis estudadas sendo que a altura de plantas (AP) e número de folhas verdes (NFV) foram as que apresentaram maior e menor variação, com sete e duas classes reveladas pelo teste Scott-Knott, respectivamente (Tabela 1). Embora ainda plantas juvenis, algumas características podem indicar bom desempenho agronômico no futuro, como número de folhas, altura de plantas e, principalmente, quantidade de espinhos na planta.

Foram obtidas estimativas elevadas e positivas de correlação entre a maioria dos caracteres avaliados (Tabela 2). Além disso, na maioria dos casos a correlação genética é mais importante do que a fenotípica e a ambiental, resultado esperado quando se tem elevada herdabilidade para os caracteres avaliados. Contrariamente, a correlação genética entre os caracteres ocorrência de espinhos (ES) e

978-85-85564-27-8

05 e 06 de junho de 2013 - Ribeirão Preto SP

comprimento do caule (CC) foi relativamente baixa (rG = 6,71) em função da baixa herdabilidade dos caracteres (dados não publicados). De acordo com a classificação de Shimakura & Ribeiro Junior (2006), as correlações encontradas são consideradas todas fortes. A correlação é dependente da presença da associação da variabilidade existente entre os caracteres. Esta associação pode ser de natureza fenotípica, genética e de ambiente. Tanto num mesmo sentido como de sentido contrário. A existência de correlação também é um indicativo de que, no controle dos dois caracteres, existem genes pleiotróipicos e/ou ligados (Falconer & Mackay, 1996; Cruz et al., 2004).

A correlação ambiental positiva indica que as características são igualmente afetadas pelas variações ambientais, não ocorrendo, assim, diferencial de ambiente que possa prejudicar o processo seletivo com base nas correlações, conforme evidenciado por Castoldi (1997).

A variabilidade entre os acessos é importante, pois nela reside a viabilidade e o sucesso do trabalho de seleção no melhoramento das culturas. Assim, estudos de variância e de seus componentes são primordiais para conhecimento e exploração das magnitudes das medidas dos caracteres no melhoramento de qualquer espécie (Ramalho et al., 1993). Paralelamente, a detecção dos melhores genótipos nativos da espécie para fins de produtividade e ou especificidade de caracteres desejados em termos comerciais torna-se um importante passo no aprimoramento do cultivo da macaúba (Manfio et al., 2012).

Tabela 1 – Teste de médias para as variáveis altura da planta (AP), número de folhas verdes (NFV) número de folhas secas (NFS), comprimento da folha (CF) comprimento do caule (CC), espessura do caule (EC) e espinh0 (ES) de 63 acessos de *Acrocomia aculeata*.

	AP NFV			,	NFS CF		CC		EC			ES	
PL	Md.	PL	Md.	PL	Md.	PL	Md.	PL	Md.	PL	Md.	PL	Md.
30	89.50a	43	6.00a	30	2.50a	30	74.25a	2	15.86a	26	7.15a	63	3.00a
33	81.00b	19	6.00a	4	2.50a	33	70.75a	1	15.50a	11	6.93a	51	3.00a
4	77.00c	37	5.80a	11	2.00b	4	64.75b	30	15.25a	4	6.75a	49	3.00a
6	75.75c	35	5.80a	6	2.00b	37	61.80b	51	15.00a	35	6.66a	46	3.00a
20	74.75c	23	5.75a	46	1.75b	6	61.50b	31	14.78a	30	6.38b	41	3.00a
37	74.20c	12	5.75a	35	1.40c	20	61.25b	8	14.67a	31	6.26b	40	3.00a
31	73.78c	51	5.71a	8	1.33c	31	59.00b	6	14.25a	5	6.24b	38	3.00a
51	73.14c	57	5.67a	33	1.25c	51	58.14c	20	13.50a	37	6.18b	36	3.00a
52	70.00c	49	5.67a	29	1.25c	24	57.50c	18	13.33a	52	6.09b	34	3.00a
40	68.00d	40	5.67a	24	1.25c	52	57.00c	52	13.00a	51	5.97c	32	3.00a
24	68.00d	21	5.67a	20	1.25c	40	57.00c	16	13.00a	33	5.90c	30	3.00a
8	67.67d	15	5.67a	31	1.22c	29	55.00c	26	12.50b	21	5.88c	20	3.00a
16	67.00d	1	5.67a	44	1.17c	23	54.75c	37	12.40b	40	5.80c	19	3.00a
49	66.33d	32	5.60a	7	1.13c	49	54.67c	4	12.25b	20	5.70c	18	3.00a
29	66.25d	5	5.60a	62	1.00c	21	54.33c	35	12.20b	6	5.68c	17	3.00a
21	65.67d	16	5.50a	53	1.00c	16	54.00c	7	12.13b	32	5.64c	16	3.00a
47	64.25d	13	5.50a	48	1.00c	47	53.25c	19	11.75b	44	5.63c	11	3.00a
7	63.38d	9	5.50a	38	1.00c	38	53.00c	49	11.67b	46	5.60c	9	3.00a

¹Doutorando – Genética, Melhoramento e Biotecnologia Vegetal, PG/IAC, bolsista Fapesp (14720-9). E-mail: <u>Incberton@gmail.com</u>; ²Pesquisador Científico, APTA-Leste Paulista; ³Pesquisador Científico –IAC; ⁴Diretor do Centro de Recursos Genéticos Vegetais – IAC;

978-85-85564-27-8

05 e 06 de junho de 2013 - Ribeirão Preto SP

23	63.00d	2	5.43a	15	1.00c	8	53.00c	21	11.33b	19	5.60c	6	3.00a
38	62.00d	48	5.40a	13	0.88d	27	51.78d	29	11.25b	22	5.55c	4	3.00a
11	62.00d	3	5.40a	52	0.86d	22	51.25d	3	11.20b	16	5.55c	13	2.88b
28	61.00e	55	5.33a	51	0.86d	7	51.25d	44	11.17b	41	5.53c	52	2.86b
27	60.78e	54	5.33a	2	0.86d	32	51.00d	47	11.00b	18	5.53c	2	2.86b
5	60.60e	31	5.33a	27	0.78d	11	51.00d	46	11.00b	47	5.48c	44	2.83b
32	60.40e	27	5.33a	22	0.75d	28	50.80d	40	11.00b	13	5.46c	21	2.83b
35	60.20e	25	5.33a	9	0.75d	5	50.80d	11	11.00b	38	5.44c	37	2.80b
44	59.67e	58	5.25a	57	0.67d	41	49.67d	50	10.67b	29	5.35c	35	2.80b
41	58.67e	47	5.25a	50	0.67d	44	48.50d	24	10.50b	24	5.35c	58	2.75b
22	58.25e	36	5.25a	43	0.67d	35	48.00d	33	10.25b	28	5.32c	50	2.67c
46	57.50e	24	5.25a	41	0.67d	57	47.67d	13	10.25b	12	5.25c	42	2.67c
19	56.38e	52	5.14a	40	0.67d	46	46.50d	28	10.20b	49	5.23c	3	2.60c
57	56.33e	61	5.11a	18	0.67d	13	45.38e	5	9.80b	45	5.23c	47	2.50c
13	55.63e	63	5.00b	16	0.67d	19	44.63e	32	9.40c	23	5.20c	43	2.50c
2	55.57e	56	5.00b	14	0.67d	48	43.40e	45	9.25c	7	5.11d	22	2.50c
18	54.33e	53	5.00b	10	0.67d	50	43.17e	41	9.00c	27	5.01d	7	2.50c
50	53.83e	45	5.00b	19	0.63d	14	42.00e	38	9.00c	10	4.97d	31	2.44c
26	53.75e	33	5.00b	28	0.60d	26	41.25e	27	9.00c	58	4.95d	27	2.44c
48	52.20f	26	5.00b	58	0.50d	18	41.00e	48	8.80c	57	4.90d	28	2.40c
14	50.00f	7	4.88b	45	0.50d	55	40.00e	57	8.67c	50	4.90d	5	2.40c
45	49.25f	44	4.83b	34	0.50d	45	40.00e	9	8.50c	14	4.90d	57	2.33c
12	48.00f	59	4.75b	26	0.50d	12	39.75e	23	8.25c	9	4.90d	55	2.33c
3	48.00f	29	4.75b	23	0.50d	2	39.71e	12	8.25c	48	4.84d	59	2.25c
9	46.00f	22	4.75b	17	0.50d	63	39.33e	43	8.00c	63	4.77d	33	2.25c
58	45.25f	4	4.75b	37	0.40d	53	38.50f	14	8.00c	55	4.77d	29	2.25c
55	45.00f	41	4.67b	32	0.40d	34	38.00f	58	7.50c	8	4.73d	12	2.25c
53	45.00f	39	4.67b	5	0.40d	17	38.00f	22	7.00c	2	4.63d	61	2.11d
17	45.00f	11	4.67b	55 42	0.33e	58	37.75f	17	7.00c	62	4.62d	48 45	2.00d
63 43	44.00g 43.50g	8	4.67b 4.67b	42 39	0.33e 0.33e	9 3	37.50f 36.80f	36 53	6.75c 6.50d	43 54	4.60d 4.50d	45 39	2.00d 2.00d
34	43.30g 42.75g	62	4.60b	59	0.35e 0.25e	61	36.78f	62	6.00d	3	4.42e	24	2.00d
61	42.33g	38	4.60b	47	0.25e	39	35.67f	25	5.67d	36	4.33e	8	2.00d
36	41.00g	28	4.60b	61	0.23e	43	35.50f	61	5.56d	42	4.30e	1	2.00d
62	40.80g	50	4.50b	21	0.17e	62	34.80f	10	5.50d	1	4.30e	62	1.80d
25	39.33g	46	4.50b	63	0.17e	36	34.25f	59	5.25d	59	4.25e	56	1.67d
39	39.00g	34	4.50b	60	0.17e	25	33.67f	55	5.00d	17	4.23e	26	1.50d
10	39.00g	30	4.50b	56	0.17e	10	33.50f	15	5.00d	56	4.20e	23	1.50d
59	37.00h	20	4.50b	54	0.17e	59	31.75g	34	4.75d	15	4.20e	25	1.33e
1	36.50h	17	4.50b	49	0.17e	54	28.67g	63	4.67d	25	4.17e	60	1.25e
54	33.00h	6	4.50b	36	0.17e	42	28.33g	42	4.67d	53	4.15e	53	1.00e
42	33.00h	18	4.33b	25	0.17e	56	27.50g	56	4.50d	34	4.15e	15	1.00e
56	32.00h	60	4.00b	12	0.17e	60	23.25h	54	4.33d	39	4.07e	14	1.00e

978-85-85564-27-8

05 e 06 de junho de 2013 - Ribeirão Preto SP

15	27.00i	42	4.00b	3	0.17e	15	22.00h	39	3.33d	61	3.78e	10	1.00e
60	26.00i	14	3.67b	1	0.17e	1	21.00h	60	2.75d	60	3.15f	54	1.00f
Média	56.55		5.13		0.75		46.60		9.94		5.23		2.49
CV%	14.39		15.79		89.95		15.81		26.28		12.97		27.26

Médias seguidas da mesma letra na coluna não diferem entre si a 5% pelo teste de Scott & Knott

Tabela 2 – Coeficiente de correlação genotípica (rG), fenotípica (rF) e ambiental (rE) entre caracteres altura da planta (AP), número de folhas verdes (NFV) número de folhas secas (NFS), comprimento da folha (CF) comprimento do caule (CC), espessura do caule (EC) e

ocorrência de espinho (ES) de 63 acessos de Acrocomia aculeata.

Caráter		NFV		NFS		CF		CC		EC		ES
AP	rF	88.02	rF	4.52	rF	77.55	rF	69.65	rF	77.21	rF	81.57
	rG	90.31	rG	99.9	rG	82.15	rG	99.90	rG	98.18	rG	94.78
	rΕ	79.62	rΕ	-42.86	rΕ	48.51	rΕ	-18.11	rΕ	5.95	rΕ	20.41
NFV			rF	48.11	rF	60.74	rF	33.89	rF	53.25	rF	71.62
			rG	99.90	rG	77.86	rG	49.98	rG	63.03	rG	89.06
			rΕ	-3.11	rΕ	5.89	rΕ	-1.71	rΕ	28.01	rΕ	28.17
NFS					rF	-28.71	rF	44.09	rF	61.61	rF	51.86
					rG	99.90	rG	97.49	rG	90.47	rG	72.00
					rΕ	-40.98	rΕ	-19.82	rΕ	-1.68	rΕ	20.36
CF							rF	88.49	rF	85.40	rF	72.22
							rG	91.74	rG	99.90	rG	99.90
							rΕ	70.86	rΕ	-10.68	rΕ	-10.68
CC									rF	-7.81	rF	29.26
									rG	6.71	rG	65.29
									rΕ	64.11	rΕ	35.52
EC											rF	58.98
											rG	79.56
											rΕ	4.32

CONCLUSÕES

O banco ativo de germoplasma de macaúba do IAC/APTA Leste Paulista é o primeiro instalado para a espécie no estado de São Paulo. Resultados preliminares evidenciam a existência de importante variabilidade genética entre os acessos para todas as características avaliadas, podendo ser explorada para fins de melhoramento da espécie.

LITERATURA CITADA

BANDEIRA, F.S. Cultivo in vitro e embriogênese somática de embriões zigóticos de macaúba Acrocomia aculeata (Jacq.) Loddiges. **Tese** (Doutorado) - Universidade Federal de Viçosa, Viçosa. 92p. 2008.

BERTON, L.H.C.; AZEVEDO FILHO, J.A.; CARVALHO, C.R.L.; SIQUEIRA, W.J.; COLOMBO, C.A. Seleção de Matrizes de macaúba (*Acrocomia aculeata*) para produção de biodiesel. **VI Workshop Matérias Primas**. Ribeirão Preto, SP. 2012.

978-85-85564-27-8

05 e 06 de junho de 2013 - Ribeirão Preto SP

CASTOLDI, F.L. Comparação de métodos multivariados aplicados na seleção em milho. Viçosa: UFV. 118p.**Tese** (Doutorado em Melhoramento Genético) - Universidade Federal de Viçosa, 1997.

CRUZ, C.D. Programa GENES: biometria. Viçosa: UFV, 382p. 2006.

CRUZ, C. D.; REGAZZI, O. J.; CARNEIRO, P. C. S. **Modelos biométricos aplicados ao melhoramento genético**. Viçosa: Imprensa Universitária, 480p. 2004.

FALCONER, D.S.; MACKAY, T.F.C. **Introduction to quantitative genetics**. 4.ed. New York: Longman, 464p. 1996.

MANFIO, C.E.; MOTOIKE, S.Y.; RESENDE, M.D.V.de.; SANTOS, C.E.M.dos.; SATO, A.Y. Avaliação de progênies de macaúba na fase juvenil e estimativas de parâmetros genéticos e diversidade genética. **Pesquisa Florestal Brasileira**, Colombo, v. 32, n. 69, p. 63-69, jan./mar.2012.

RAMALHO, M. A. P.; SANTOS, J. B.; ZIMMERMANN, M. J. O. Genética quantitativa em plantas autógamas: aplicações ao melhoramento do feijoeiro. Goiânia: UFG, 271 p. 1993.