ISBN 978-65-88904-06-0

GERMINAÇÃO IN VITRO DE EMBRIÕES ZIGÓTICOS DE Syagrus oleracea (Mart.) Becc. EM MEIOS COM DIFERENTES CONCENTRAÇÕES DE SAIS

IN VITRO GERMINATION OF ZYGOTIC EMBRYOS OF Syagrus oleracea (Mart.) Becc. IN MEDIUM WITH DIFFERENT SALT CONCENTRATIONS

Thaís Fabijam Silva do Amaral¹; Roberta Delgado Teixeira²; Jessica Jennifer Pereira¹; Letícia Costa Geraldo²; Yuri Palacio Mello¹; Nathaly Tacki Maass Ribeiro¹; Joyce Sena dos Santos²; Rildo Gabriel Rodrigues Farias¹; Ana Caroline Tavares Barbosa¹; <u>Inaê Mariê de Araújo Silva-Cardoso³</u>; Jonny Everson Scherwinski-Pereira⁴

¹ Estudante de Engenharia Florestal da Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900, Brasília, DF, Brasil. tfabijam@gmail.com; jessicajenniferpe@gmail.com; yuripmllo@gmail.com; nathaly.tacki@hotmail.com; gabriel.rildo@gmail.com; tavaresbarbosaa@gmail.com; ² Estudante de Agronomia da Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900, Brasília, DF, Brasil. r.delgg@hotmail.com; leticiavaze@gmail.com; joycemari.ss@gmail.com; ³ Pós-doutoranda da Embrapa Recursos Genéticos e Biotecnologia, CEP 70770-917, Brasília, DF, Brasil. inaemarie@hotmail.com. Apresentadora do trabalho.; ⁴ Pesquisador da Embrapa Recursos Genéticos e Biotecnologia, CEP 70770-917, Brasília, DF, Brasília, DF, Brasil. jonny.pereira@embrapa.br.

INTRODUÇÃO

Syagrus oleracea (Mart.) Becc., popularmente conhecida como gueroba, é uma palmeira nativa do Brasil Central, com múltiplos usos e, portanto, uma opção para diversificação de renda para o pequeno e médio produtor. Dentre os produtos passíveis de exploração citam-se o palmito de sabor amargo (SILVA-CARDOSO et al., 2017) e os frutos, sobretudo, as amêndoas consideradas fonte potencial de nutrientes (GOUVEIA et al., 2018) e o endocarpo com uso potencial para produção de carvão ativado (SANTOS et al., 2019).

Apesar da relevância da espécie, principalmente, no Brasil Central, há um déficit de estudos voltados principalmente à conservação de germoplasma e desenvolvimento de métodos eficientes de propagação (SILVA-CARDOSO et al., 2017). A espécie propaga-se exclusivamente por via sexuada, apesar das tentativas recentes de desenvolvimento de protocolos de propagação clonal por embriogênese somática (SILVA-CARDOSO et al., 2019). A sua germinação é considerada lenta e irregular (SILVA-CARDOSO et al., 2017), porém quando realizada *in vitro*, os índices aumentam significativamente (MELO et al., 2001; NETO et al., 2015). Nesse sentido, a otimização das condições de cultivo *in vitro*, sobretudo daquelas relacionadas ao meio de cultivo, é crucial para garantir uma eficiente propagação da espécie, bem como o melhor entendimento fisiológico do seu processo germinativo. Vale mencionar, contudo, que o cultivo *in vitro* exige investimento em equipamentos, energia elétrica, componentes do meio de cultura, dentre outros fatores, que encarecem esse sistema de propagação e/ou estudo.

Nesse sentido, objetivou-se investigar o efeito da formulação salina Y3, desenvolvida especificamente para a germinação de uma palmeira (EEUWENS, 1962), sobre a germinação *in vitro* de *Syagrus oleracea* Mart. Becc. Adicionalmente, visando reduzir custos do cultivo *in vitro*, testaramse o meio Y3 com a concentração original de sais e com metade da concentração original.

MATERIAL E MÉTODOS

Frutos maduros de *Syagrus oleracea* Mart. Becc. (gueroba) foram coletados de plantas adultas provenientes de populações localizadas no município de Itaberaí, Goiás, Brasil, para extração dos embriões zigóticos. Após extração dos frutos, as sementes foram mantidas à temperatura de 4°C por seis semanas, antes do início do experimento.

A desinfestação das sementes foi realizada em câmara de fluxo laminar, por imersão em álcool etílico 70% (v/v), durante cinco minutos, seguida de imersão em solução de hipoclorito de sódio (NaOCl) (2,5% de cloro ativo) por 30 min. Três sucessivas lavagens foram realizadas em água destilada e autoclavada, por um minuto cada. Logo depois, em condições assépticas, as sementes foram seccionadas e os embriões isolados.

Em seguida, os embriões zigóticos foram inoculados nos seguintes meios de cultivo: Y3 (EEUWENS, 1976) com força total (com a concentração original dos sais) e Y3 meia força (metade da concentração de sais). A fonte de Fe-EDTA e vitaminas do meio Y3 foi mantida de acordo com a concentração original do meio de cultura de MS (MURASHIGE; SKOOG, 1962). Ambos os meios foram suplementados com 30 g/L de sacarose e 2,5 g/L de carvão ativado.

Os meios usados foram gelificados com 2,5 g/L de Phytagel (Sigma) e o pH ajustado para 5.8 ± 0.1 antes da adição do agente gelificante. Os meios foram autoclavados por 20 minutos à 121 °C e 1,5 atm de pressão. O experimento foi realizado em tubos de ensaio ($25 \times 150 \text{ mm}$) mantidos em sala de crescimento com condições controladas de temperatura (25 ± 2 °C), sob disponibilidade de luz. Avaliaram-se, após 180 dias, as seguintes variáveis (%): oxidação, alongamento do pecíolo cotiledonar, emissão de parte aérea, emissão de raiz e emissão de parte aérea e raiz (germinação completa).

Adotou-se delineamento inteiramente casualizado. Cada tratamento foi composto por cinco repetições com 10 embriões zigóticos cada. Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey (p<0,05), por meio do software estatístico R.


RESULTADOS E DISCUSSÃO

Aos 30 dias de cultivo, verificou-se, independentemente do meio de cultivo testado, intumescimento e/ou início de alongamento do pecíolo cotiledonar de alguns embriões. Não se observou nesse período a ocorrência de oxidação. Com 60 dias de cultivo, observaram-se o alongamento mais expressivo do pecíolo cotiledonar e o esverdeamento, sobretudo, da região distal de uma parcela dos embriões inoculados. Com 90 dias, notou-se início de emissão de meristemas.

Já após 180 dias em meio de cultivo *in vitro*, verificou-se oxidação em alguns embriões zigóticos não germinados, os quais exibiam indícios de calos, provavelmente, por injúrias ocasionadas durante a extração do interior das amêndoas. Oxidação também foi observada em haustórios e pecíolos cotiledonares de embriões germinados, independentemente do tratamento avaliado. Essa maior oxidação verificada principalmente nos haustórios está relacionada certamente com a perda de função dessa estrutura em condições *in vitro*, as quais, geralmente, atrofiam. Atrofiamento do haustório também foi mencionado

durante a germinação *in vitro* de *Butia capitata* (MAGALHÃES et al., 2013). Nesse período de avaliação, verificou-se também 19% de contaminação bacteriana e 7% de contaminação fúngica.

Aos 180 dias, avaliaram-se a taxa de oxidação, alongamento do pecíolo cotiledonar, emissão de parte aérea, emissão de sistema radicular e emissão de ambos os meristemas (germinação completa) (Figura 1), não sendo verificadas diferenças estatísticas entre os tratamentos testados, com valores médios de 19%, 41%, 25%, 15% e 10%, respectivamente. Apesar da ausência de diferenças entre os tratamentos testados para as variáveis supramencionadas, o meio Y3 com força completa apresentou 20% de explantes (embriões e plantas) vitrificados (Figura 1), ou seja, morfologicamente quebradiços e translúcidos, similar ao mencionado em outras espécies cultivadas *in vitro* (SAHER *et al.*, 2005; LIU *et al.*, 2017).

Figura 1 - Diferentes respostas morfológicas de embriões zigóticos de *Syagrus oleracea* após 180 dias em meio de cultivo visando à germinação. A: Embrião zigótico sem alongamento do pecíolo cotiledonar. B: Embrião zigótico com alongamento do pecíolo cotiledonar. C: Emissão de parte área com anormalidade (hiperhidricidade). D, E: Germinação completa. F: Emissão de parte aérea. Barra: 1 cm.

A vitrificação também conhecida como hiperidricidade é uma anormalidade fisiológica típica de plantas cultivadas *in vitro*, que leva a menor lignificação, hidratação extrema, ineficiência estomática, dentre outras modificações (MUNEER et al., 2018) que inviabilizam o desenvolvimento posterior da planta. A composição do meio de cultura corresponde a um dos vários fatores responsáveis pela ocorrência desse tipo de resposta (IVANOVA; VAN STADEN, 2008; VASUDEVAN; VAN STADEN, 2011; LIU et al., 2017). De acordo com Brand (1993), o nitrato associado com outros fatores pode ser positivamente ou negativamente correlacionado com a ocorrência de hiperidricidade. Salienta-se que a principal fonte de nitrogênio do meio Y3 é nitrato de potássio (KNO₃). Nesse sentido, a relação entre ocorrência de vitrificação e uma maior concentração de nitrato no meio de cultura não pode ser descartada.

Embora as diferentes concentrações de sais do meio Y3 testadas não diferiram entre si quanto à germinação *in vitro* de gueroba, algumas observações importantes devem ser enfatizadas. Neste experimento, o alongamento do pecíolo cotiledonar não foi um indicativo de emissão de meristemas, uma vez que, obteve-se um valor médio de 41% de alongamento, ao passo que os valores de emissão de um único meristema, parte aérea ou raiz, ou de ambos foram consideravelmente mais baixos (25%, 15% e 10%, respectivamente). Salienta-se ainda uma taxa maior de emissão do meristema apical caulinar comparativamente ao radicular.

A baixa taxa de germinação obtida nesse experimento difere do reportado por Neto *et al.* (2015), os quais relataram até 71,1% de germinação quando os embriões foram extraídos de frutos dessecados à ± 37°C. Esses autores salientaram a importância da dessecação dos frutos previamente à extração dos embriões zigóticos na redução da contaminação *in vitro*, reduzindo-a 3,3%, valor considerado aceitável. Melo *et al.* (2001) também reportaram alta taxa de germinação *in vitro* de embriões de gueroba. Esses autores atribuíram esse resultado à quebra de dormência associada ao uso de antioxidantes e meio de cultura adequado. É importante mencionar que os autores supracitados utilizaram o meio de cultura MS (MURASHIGE; SKOOG, 1962). Como mencionado anteriormente, verificou-se nesse experimento contaminações fúngicas e bacterianas, que em conjunto com a provável inadequacidade do meio de cultura utilizado comprometeram a germinação da espécie.

CONCLUSÕES

As diferentes concentrações de sais do meio Y3 testadas não diferiram entre si quanto à germinação *in vitro* de gueroba. Nas condições de estudo, a germinação, independentemente da concentração de sais do meio Y3, foi baixa, lenta e assincrônica. O meio Y3 com força total proporcionou a ocorrência de vitrificação em uma parcela do explantes.

REFERÊNCIAS

BRAND, M. H. Agar and ammonium nitrate influence hyperhydricity, tissue nitrate and total nitrogen content of serviceberry (*Amelanchier arborea*) shoots *in vitro*. **Plant Cell, Tissue and Organ Culture**, Netherlands, v. 35, p. 203-209, 1993.

EEUWENS, C.J. Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (*Cocos nucifera*) and cultured in vitro. **Physiologia Plantarum**, Denmark, v. 36, p. 23-28, 1976.

GOUVEIA, D.S.; LIMA, A.K.S.; DUARTE, M.E.M.; MATA, M.E.C.; DANTAS, R.L. Potencial nutricional e perfil lipídico do óleo da amêndoa do coco catolé (*Syagrus oleracea* Mart.). **Revista Brasileira de Gestão Ambiental**, Pombal - Brasil, v. 12, n. 4, p.01-06, 2018.

IVANOVA, M.; VAN STADEN, J. Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of *Aloe polyphylla*. **Plant Cell, Tissue and Organ Culture**, Netherlands, v. 92, p. 227-231, 2008.

ISBN 978-65-88904-06-0

IVANOVA, M.; VAN STADEN, J. Influence of gelling agent and cytokinins on the control of hyperhydricity in *Aloe polyphylla*. **Plant Cell, Tissue and Organ Culture**, Netherlands, v. 104, p. 13-21, 2011.

LIU, M.; JIANG, F.; KONG, X.; TIAN, J.; WU, Z.; WU, Z. Effects of multiple factors on hyperhydricity of *Allium sativum* L. **Scientia Horticulturae**, Netherlands, v. 217, p. 2852-96, 2017.

MAGALHÃES, H. M.; LOPES, P. S. N.; RIBEIRO, L. M.; SANT'ANNA-SANTOS, B. F.; OLIVEIRA, D. M. T. Structure of the zygotic embryos and seedlings of *Butia capitata* (Arecaceae). **Trees**, Germany, v. 27, p. 273-283, 2013.

MELO, B.; PINTO, J. E. B. P.; LUZ, J. M. Q.; PEIXOTO, J. R.; JULIATTI, F. C. Diferentes antioxidantes no controle da oxidação, germinação e desenvolvimento das plântulas na cultura *in vitro* de embriões de guarirobeira [*Syagrus oleracea* (Mart.) Becc]. **Ciência e Agrotecnologia**, Lavras - Brasil, v. 25, n. 6, p. 1301-1306, 2001.

MUNEER, S.; PARK, Y. G.; JEONG, B. R. Red and blue light emitting diodes (leds) participate in mitigation of hyperhydricity in in vitro-grown carnation genotypes (*Dianthus Caryophyllus*). **Journal of Plant Growth Regulation**, Netherlands, v. 37, p. 370-379, 2018.

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. **Physiologia Plantarum**, Denmark, v. 15, n. 3, 473-497, 1962.

NETO, R. A.; OLIVEIRA, J. C. de; FREITAS, B. M. S. de; LIMA, L. R. de; SOUZA, J. L. F. de; SALES, J. de F. Desiccation tolerance of embryos of *Syagrus oleracea*, a cerrado native bitter palm heart. **African Journal of Biotechnology**, Nigeria, v. 14, n. 11, 922-929, 2015.

SAHER, S.; PIQUERAS, A.; HELLIN, E.; OLMOS, E. Prevention of hyperhydricity in micropropagated carnation shoots by bottom cooling: implications of oxidative stress. **Plant Cell, Tissue and Organ Culture**, Netherlands, v. 81, p. 149-158, 2005.

SANTOS, K.J.L; SANTOS, G.E.S.; LEITE DE SÁ, I.M.G.; CARVALHO, S.H.V.; SOLETTI, J.I.; MEILI, L.; DUARTE, J.L.S.; BISPO, M.D.; DOTTO, G.L. *Syagrus oleracea*—activated carbon prepared by vacuum pyrolysis for methylene blue adsorption. **Environmental Science and Pollution Research**, Germany, v. 26, n. 16, p. 16470-16481, 2019.

SILVA-CARDOSO, I.M.A.; MEIRA, F.S.; GOMES, A.C.M.M.; SCHERWINSKI-PEREIRA, J.E. Histology, histochemistry and ultrastructure of pre-embryogenic cells determined for direct somatic embryogenesis in the palm tree *Syagrus oleracea*. **Physiologia Plantarum**, Denmark, 2019.

SILVA-CARDOSO, I.M.A.; SOUZA, A.M.; SCHERWINSKI-PEREIRA, J.E. The palm tree *Syagrus oleracea* Mart. (Becc.): A review. **Scientia Horticulturae**, Netherlands, n. 225, v. 65-73, 2017.