

38 – CUSTO DE PRODUÇÃO DE MUDAS DE BANANA MICROPROPAGADA (Musa sp.)

<u>Vanessa Barbosa Nascimento¹</u>; Wendell Brendell Lima de Araujo²; Maria Isabel Garcia Ribeiro²; Fabiana Barbosa do Nascimento³; Denise Pinho Moreira³; Mateus Rezende Carrijo²; Pedro Ribeiro do Vale²; Lucas Ramon de Almeida Moraes².

- ¹ Universidade Federal de Roraima (UFRR), Campus do Cauamé, BR-174, Km 12, Monte Cristo Boa Vista Roraima, CEP 69.301-970, Brasil. vanessabarbosa.n@gmail.com.
- ² Instituto de Educação e Inovação (IEDi), Av. Ville Roy, 1908 Caçari, Boa Vista RR, 69307-725, Brasil.
- ³ Universidade Federal de Roraima (UFRR), Campus do Cauamé, BR 174, Km 12, Monte Cristo Boa Vista Roraima, CEP 69.301-970, Brasil.

INTRODUÇÃO

- Origem do continente asiático;
- família *Musaceae*, e das subfamílias *Musoideae*, gênero *Musa.*
- Distribuída em todo território Nacional.

Avaliar e realizar uma análise de custo de produção de mudas de banana micropropagadas.

METODOLOGIA

O trabalho foi realizado no Laboratório de Cultura de Tecidos da Embrapa Roraima, localizado em Boa Vista-RR. Foi selecionada a espécie tipo bananeira para realizar o levantamento de custo de produção in vitro, tendo em vista que é a única espécie que está sendo produzida em escala comercial.

Portanto, considerou-se os custos envolvidos no sistema de produção de mudas de banana durante seis subcultivos (BORNIA, 2009).

Realizou-se uma pesquisa de mercado em nível nacional, referente aos valores dos produtos utilizados para produção de mudas de banana micropropagadas, tendo como base a tabela de protocolo utilizada no laboratório (Quadro 1).

Utilizou-se, neste estudo, empresas aleatórias do mercado como base para o valor dos componentes para realização do cultivo in vitro, a fim de obter uma média no tocante ao valor dos mesmos para a produção de mudas de banana sob micropropagação.

Além disso, utilizou-se para verificação dos custos referente aos componentes, uma média de 1 kg por produto utilizado no cultivo in vitro, a fim de verificar o valor destes em cada empresa especializada no ramo e compreender qual a quantidade de mudas de banana sob cultivo in vitro que determinado produto é capaz de fazer com 1 kg, e seu valor equivalente.

RESULTADOS E CONCLUSÕES

Tabela 1: Descrição da Solução Nutritiva de Murashige & Skoog (1962), contendo os macro, micronutriente, vitaminas, minerais, carboidratos, citocininas e agente geleificante.

		Preço I	Preço II	Preço III
Solução estoque	Compostos	R\$/Kg	R\$/Kg	R\$/Kg
A	NH4NO3 – Nitrato de amônio	195,1	186,54	850
В	KNO3 – Nitrito de potássio	725,92	250	480
	H3BO3 – Ácido bórico	16,32	42,62	36,05
	KH2PO4 – Fosfato de potássio	125,24	126,54	135,34
С	Kl – Iodeto de potássio	908,66	1186,24	856,89
	Na2MoO4.2H2O – Molibdato de sódio	514,20	342,00	542,05
	CoC12.6H2O - Cloreto de cobalto	551,24	630,76	1455,16
D	CaCl2.2H2O – Cloreto de cálcio	20,38	46,71	33,46
	MgSO4.7H2O – Sulfato de magnésio	37,81	49,00	63,30
	MnSO4.4H2O – Sulfato de manganês	32,64	93,54	145,84
E	ZnSO4.7H2O - Sulfato de zinco	48,96	59,38	153,52
	CuSO4.5H2O - Sulfato de cobre	293,63	88,66	240,84
	NaEDTA.2H2O – Sódio EDTA	483,96	131,84	445,28
F	FeSO4.7H2O – Sulfato de ferro	175,44	72,46	214,64
	Tiamina HCL	2196,8	1776,4	1356,00
G	Ác. Nicotínico	453,7	358,68	495,00
Vitaminas	Piridoxina HCL	1400,4	1400,4	2864,4
	Inositol	350	390,16	390
	Glicina	241,98	247,08	181,24
	Agar	500	630	663
н	Sacarose	22,69	25	28
	BAP (5g)	88,43	77	70
	TOTAL	9.383,97	8.211,01	11.700,01

Tabela 2: Valores médios referentes ao custo por composto utilizado no cultivo *in vitro*, conforme a Solução Nutritiva de Murashige & Skoog (1962).

C -1 2 -	D	Tere	OMBC	OT DDE	UD/E -)	VCIN
Solução	Reagentes	GLS	QVPS	QLPPF	VP(Kg)	VGLM
A	NH4NO3 - Nitrato de amônio	82,5	12	600	186,54	0,31
В	KNO3 – Nitrito de potássio	95	10	500	250	0,5
С	H3BO3 – Acido bórico	12,4	80,65	16129,03	16,32	0,001
	KH2PO4 – Fosfato de potássio	34	29,41	5882,35	125,24	0,021
	Kl – Iodeto de potássio	0,16	6250	1250000	908,66	0,0007
	Na2MoO4.2H2O - Molibdato de sódio	0,05	20000	4000000	514,2	0,0001
	CoCl2.6H2O - Cloreto de cobalto	0,005	200000	40000000	551,24	0,0000
D	CaCl2.2H2O - Cloreto de cálcio	8,8	113,64	2272,73	20,38	0,009
E	MgSO4.7H2O – Sulfato de magnésio	74,00	13,51	2702,7	37,81	0,014
	MnSO4.4H2O – Sulfato de manganês	4,46	224,22	44843,05	32,64	0,0007
	ZnSO4.7H2O - Sulfato de zinco	1,72	581,4	116279,1	48,96	0,0004
	CuSO4.5H2O - Sulfato de cobre	0,005	200000	40000000	293,63	0,0000
T.	NaEDTA.2H2O – Sódio EDTA	7,45	134,23	26845,64	483,96	0,0180
F	FeSO4.7H2O - Sulfato de ferro	5,57	179,53	35906,64	175,44	0,0048
G Vitaminas	Tiamina HCL	0,05	20000	2000000	2196,8	0,001
	Àc. Nicotínico	0,05	20000	2000000	453,7	0,0002
	Piridoxina HCL	0,05	20000	2000000	1400,4	0,000

Tabela 3: Valores referentes a custo por composto utilizado no cultivo *in vitro*, conforme a Solução Nutritiva de Murashige & Skoog (1962).

Custo de produção de 10 mil mudas				
Custos de produção	2368,69			
Meio de cultura				
Custos dos Recipientes	2705,39			
Material de consumo	1676,79			
Despesa com pessoal	4.000,00			
Valor total	10750,77			
Valor final por muda	1,07			

Com base nos dados obtidos concluiu que a muda custa R\$ 1,07 no valor final. Tendo em vista que a pesquisa de mercado dos reagentes para produção de meio de cultura sendo a base para o crescimento das mudas é o fator primordial para uma melhor rentabilidade da empresa.

AGRADECIMENTOS

