

28 e 29/09/2017 - Ribeirão Preto-SP www.simpmudas.com.br

EFEITO DE DOSES CRESCENTES DE HIDROGEL SOBRE CRESCIMENTO DE MUDAS DE TOMATEIRO

EFFECTS OF INCREASING HYDROGEL DOSES IN TOMATO SEEDLINGS

<u>Mariane Pereira dos Santos Souza</u>*¹; Cláudia Lopes Prins*²; Ariane Cardoso Costa *³; Liliane Ribeiro Nunes *⁴; Lucas Sanches dos Santos*⁵

*Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000 P4 sala 119, CEP 28013-602, Campos dos Goytacazes, RJ; ¹ marianedudu@hotmail.com; ² prins@uenf.br; ³ arianecardosocosta@hotmail.com; ⁴ liliane_nunes2@hotmail.com; ⁵ sanchesdossantos.lucas@gmail.com

INTRODUÇÃO

A qualidade de uma muda em sua formação é a etapa mais importante do sistema produtivo de hortaliças, pois permite melhor planejamento da produção e contribui para a profissionalização dos produtores frente a um mercado cada vez mais competitivo (MINAMI, 1995). Atualmente, a agricultura irrigada é considerada a atividade de maior consumo de água do Brasil, responsável pelo uso de 72% da água do país (AGÊNCIA NACIONAL DE ÁGUA-ANA, 2013). Diante da falta de água no mundo e do alto consumo desse bem no setor agrícola, se tem buscado meios para o uso racional da água, visando reduzir seu consumo e minimizar os efeitos que a sua falta causa na qualidade da produção agrícola em regiões com déficit hídrico, pois a água está diretamente ligada ao aumento da oferta de alimentos.

A perda de água e seu alto consumo na agricultura têm gerado a necessidade de se buscar alternativas para melhorar a eficiência de uso da água através do manejo da irrigação e absorção de água pelas plantas. Sendo assim, o hidrogel tem sido uma alternativa viável, pois é capaz de absorver a água proveniente tanto da chuva quanto da irrigação e liberá-la aos poucos no solo, reduzindo assim a frequência de irrigação. O polímero hidroabsorvente ou hidrogel é um material capaz de reter grandes volumes de água em sua estrutura sem se dissolver (RUDZINSKI et al., 2002), armazenando centenas de vezes o seu peso em água e liberando gradualmente para as plantas, aumentando os intervalos de irrigações (COELHO et al., 2008). Eles atuam como condicionadores do solo, melhorando propriedades estruturais, permeabilidade e taxas de infiltração, além de reduzirem a erosão hídrica e contribuírem para o uso eficiente da água (BEZERRA et al., 2007).

No Brasil essas pesquisas com o hidrogel na agricultura aconteceram mais tardiamente com experimentos realizados por Balena (1998) e Azevedo (2000), portanto os hidrogéis são utilizados no Brasil na produção de frutas, hortaliças e mudas de diversas espécies, bem como na formação de gramados em jardins, campos de futebol e de golfe (OLIVEIRA et al., 2004). Sabe-se que a adição de

28 e 29/09/2017 - Ribeirão Preto-SP www.simpmudas.com.br

ISBN 978-85-66836-14-1

hidrogel no solo otimiza a disponibilidade de água, reduzindo perda de nutrientes e melhorando a aeração e drenagem do solo, acelerando o desenvolvimento do sistema radicular e da parte aérea das plantas (AZEVEDO et al., 2002). No entanto, polímeros hidroabsorventes podem causar fitotoxidez, sendo necessário estudo prévio para avaliar a ocorrência de tais efeitos. Com isso, o presente trabalho tem como objetivo, identificar o efeito de doses crescentes de polímero hidroabsorvente hidrogel na produção de mudas de tomateiro.

MATERIAL E MÉTODOS

O experimento foi desenvolvido em ambiente protegido, (estufa 147 m², 546 m³, coberta com filme transparente 150 μm e tela lateral de 35% de sombreamento), na Universidade Estadual do Norte Fluminense Darcy Ribeiro, localizada na cidade de Campos dos Goytacazes - RJ. Sementes de tomate italiano (Topseed®) foram semeadas em bandejas de poliestireno expandido de 200 células preenchidas com substrato comercial para hortaliças (Basaplant®) acrescido de diferentes doses de polímero hidroretentor (Copolímero Acrílico de Potássio a Acrilamida, CTC 532,2600 mmol₀/dm³, CRA 1.526,6900%, farelado, classe E). O hidroretentor foi previamente hidratado com aplicação de 400 mL da água para cada 1g de polímero em recipiente fechado. Após 24h o hidroretentor foi peneirado para retirada do excesso de água sendo retido o volume de 370 mL de água para cada 1g. Os tratamentos constituíram-se de T1 – controle sem hidrogel, T2 – 5 mL/L de hidroretentor; T3 – 10 mL/L de hidroretentor; T4 – 15 mL/L de hidroretentor e T5 – 20 mL/L de hidroretentor.

As sementes de tomate italiano (Topseed®) foram semeadas em bandejas de poliestireno expandido com 200 células. Aos 30 dias após a semeadura as mudas foram avaliadas. Foram determinados altura da parte aérea (cm), diâmetro do colo (mm), massa fresca e seca da parte aérea e da raiz.

Os dados foram submetidos à análise de variância ($P \ge 0.05$) e havendo efeito dos tratamentos foi realizado teste de médias (Tukey, 5%).

RESULTADOS E DISCUSSÃO

Não foi verificado efeito significativo dos tratamentos sobre o crescimento de mudas de tomateiro. As mudas apresentaram, em média, 11,04 cm de altura, 2,44 mm de diâmetro do colo, 4,12 g de massa fresca da parte aérea, 2,50 g de massa fresca de raiz, 0,13 g de massa seca da parte aérea e 0,049 g de massa seca de raiz. Polímeros hidroretentores são utilizados para evitar ou reduzir problemas relacionados à deficiência hídrica, já que o polímero com sua elevada capacidade de retenção de água atuaria como reserva para períodos de maior demanda hídrica (MENDONÇA et al., 2013). Gunes (2007) verificou que o uso de hidrogel em solo arenoso foi benéfico para tomateiro após o transplantio. O uso de hidrogel tem sido relatado principalmente para mudas de espécies florestais com indicações de eficácia na proteção contra os efeitos da seca. Em eucalipto, por exemplo, o uso do

28 e 29/09/2017 - Ribeirão Preto-SP www.simpmudas.com.br

ISBN 978-85-66836-14-1

hidrogel tem contribuído para bom crescimento das mudas e também em aspectos nutricionais (FELIPE et al., 2016). O uso de doses excessivas de hidrogel pode prejudicar o crescimento das plantas (WALLACE et al., 1986), sendo por isso necessários experimentos prévios para avaliar a fitotoxidez destes compostos.

TABELA 1 - Características biométricas de mudas de tomateiro em função de doses de polímero hidroretentor.

DOSES DE HIDRORETENTOR	ALTURA DA PARTE AÉREA	DIÂMETRO DO COLO	MASSA FRESCA DA PARTE AÉREA	MASSA FRESCA DA RAIZ	MASSA SECA DA PARTE AÉREA	MASSA SECA DA RAIZ
ml/L	cm	mm	g			
0	12,75 A	2,53 A	4,52 A	2,52 A	0,13 A	0,045 A
5	14,15 A	2,39 A	4,12 A	2,47 A	0,14 A	0.050 A
10	12,50 A	2,42 A	4,05 A	2,56 A	0,13 A	0,049 A
15	14,19 A	2,43 A	4,18 A	2,55 A	0,14 A	0,054 A
20	12,65 A	2,44 A	3,76 A	2,39 A	0,12 A	0,046 A
Médias	11,04	2,44	4,13	2,50	0,13	0,049

^{*}Letras iguais não diferem estatisticamente pelo teste da anova ao nível de 5% de probabilidade.

CONCLUSÕES

Neste trabalho as doses utilizadas não foram prejudiciais ao crescimento das mudas de tomateiro.

AGRADECIMENTOS: CNPq, UENF- PIBIC, FAPERJ, CAPES

REFERÊNCIAS

AGÊNCIA NACIONAL DE ÁGUAS. **Conjuntura dos recursos hídricos no Brasil**: 2013. Brasília: ANA, 2013. 432 p.

AZEVEDO, T. L.; BERTONHA, A.; GONÇALVES, A. C. A. Uso de Hidrogel na agricultura. **Revista do Programa de Ciências Agro-Ambientais**, Alta Floresta, v.1, n.1, p.23-31, jun. 2002.

BEZERRA, M.N.; NETO, M.P.A.; FEITOSA, J.P.A. Hidrogéis compósitos de copolímero acrilamida-acrilato e dolomita para aplicação na agricultura. In: CONGRESSO BRASILEIRO DE POLÍMEROS, 9., 2007, Campina Grande. Anais... Campina Grande: Congresso Brasileiro de Polímeros, 2007. p. 1-9.

28 e 29/09/2017 - Ribeirão Preto-SP www.simpmudas.com.br

ISBN 978-85-66836-14-1

BALENA, S. P. Efeito de polímeros hidroretentores nas propriedades físicas e hidráulicas de dois meios porosos. 1998. 57f. Dissertação (Mestrado em Agronomia) - Universidade Federal do Paraná, Curitiba, 1998.

COELHO, J. B. M.; BARROS, M. F. C.; CORREA, M. M.; WANDERLEY, R. A.; JÚNIOR, J. M. C.; FIGUEREDO, J. L. C. Efeito do polímero hidratassolo sobre propriedades físico-hídricas de três solos. **Revista Brasileira de Ciências Agrárias**, Recife, v. 3, n. 3, p.253-259, 2008.

FELIPE, D.; NAVROSKI, M.C.; SAMPIETRO, J.A.; FRIGOTTO, T.; ALBUQUERQUE, J.A.; MOTA, C.S.; PEREIRA, M.O. Water-absorbing polymer saim to increase the water retention capacity of the soil for the seedlings, providing better quality. **Floresta**, Lages, v. 46, n. 2, p. 215-225, 2016.

GUNES, T. Effect of polymer in seedling survival and growth of transplanted tomato under water-stress. **Asian Journal of Chemistry**, Loveland, v. 19, n. 4, p. 3208-3214. 2007.

MENDONÇA, T. G.; QUERIDO, D. C. M.; SOUZA, C. F.. Eficiência do polímero hidroabsorvente na manutenção da umidade do solo no cultivo de alface. **Revista Brasileira de Agricultura Irrigada**, Fortaleza, v. 9, n. 4, p. 239, 2015.

MENDONÇA, T.G.; URBANO, V.R.; PERES, J.G.; SOUZA, C.F. Hidrogel como alternativa no aumento da capacidade de armazenamento de água no solo. **Water Resources and Irrigation Management**, Campina Grande, v.2, n. 2, p. 87-92, 2013.

MINAMI, K. **Produção de mudas de alta qualidade em horticultura**. São Paulo: T.A. Queiroz, 1995. 128p.

OLIVEIRA, R.A.; REZENDE, L.S.; MARTINEZ, M.A.; MIRANDA, G.V. Influência de um polímero hidroabsorvente sobre a retenção de água no solo. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 8, n. 1, p.160-163, 2004.

RUDZINSKI, W.E.; DAVE, A.M.; VAISHNAV, U.H.; KUMBAR, S.G.; KULKARNI, A.R.; AMINABHAVI, T.M. Hydrogels as controlled release devices in agriculture. **Designed Monomers and Polymers**, San Marcos. v.5, p.39-65, 2002.

28 e 29/09/2017 - Ribeirão Preto-SP www.simpmudas.com.br

ISBN 978-85-66836-14-1

WALLACE, A.; WALLACE, G.A.; ABOUZAMZAM, A.M. Effect of excess levels of a polymer as a soil conditioner on yields and mineral nutrition of plants. **Soil Science**, Los Angeles, v. 141, n. 5, p. 377-380, 1986.