EFICIÊNCIA DE FUNGICIDAS NO CONTROLE DA MANCHA BRANCA EM MILHO NO MUNICÍPIO DE MARACAJU, MS*

<u>Ana Claudia Ruschel Mochko</u>⁽¹⁾, Elder de Oliveira Soares⁽²⁾, Ana Carolina ribeiro Souza ⁽³⁾, Luciano Del Bem Júnior⁽⁴⁾, Isamara Nicoletti Soares⁽⁵⁾, Alyne Ciriaco Oliveira ⁽⁶⁾

Palavras-chave: Zea mays, Pantoea ananatis, mancha foliar.

O milho (Zea mays L.) é o cereal mais produzido no mundo, seguido do trigo e do arroz (USDA 2019). A produção de milho pode ser limitada devido a perdas causadas por doenças como a mancha branca, causada pela bactéria *Pantoea ananatis* (GONÇALVES et al., 2013 -https://www.jstor.org/stable/23721577). O uso de fungicidas no manejo de doenças foliares do milho é amplamente empregado no Brasil, sendo fundamental a obtenção de informações acerca da eficácia dos fungicidas em diferentes regiões do país (CUSTÓDIO, 2020 -http://www.idrparana.pr.gov.br/sites/iapar/arquivos restritos /files/documento/2021-01/bt96 - idr-parana - 29-01-2021.pdf). Dessa forma, o objetivo do trabalho foi avaliar a eficiência de diferentes fungicidas no controle da mancha branca em plantas de milho.

O ensaio foi conduzido no município de Maracaju, MS, na Unidade de Pesquisa da Fundação MS (21°38'48.05"S; 55°05'53.52"O) durante o período de fevereiro a agosto de 2021. Utilizou-se sementes do híbrido Fórmula Viptera 2 e o ensaio foi disposto em delineamento experimental em blocos ao acaso, com 16 tratamentos e quatro repetições. Cada parcela foi constituída de seis linhas de 8,0 m de comprimento, espaçadas a 0,50 m. Os tratamentos foram constituídos por: T1 (Testemunha), T2 (Piraclostrobina + Epoxiconazol – 300 ml ha⁻¹), T3 (Trifloxistrobina + Tebuconazole – 600 ml ha⁻¹), T4 (Trifloxistrobina + Protioconazol – 400 ml ha⁻¹), T5 (Azoxistrobina + Ciproconazole - 300 ml ha⁻¹) T6 (Azoxistrobina + Tebuconazole - 500 ml ha⁻¹), T7 (Picoxistrobina + Ciproconazole – 300 ml ha-1), T8 (Trifloxistrobina + Ciproconazol – 300 ml ha⁻¹), T9 (Bixafem + Protioconazol + Trifloxistrobina – 500 ml ha⁻¹), T10 (Piraclostrobina + Fluxapiroxade - 300 ml ha⁻¹), T11 (Epoxiconazol + Fluxapiroxade + Piraclostrobina – 500 ml ha⁻¹), T12 (Azoxistrobina + Benzovindiflupir – 200 ml ha⁻¹), T13 (Picoxistrobina + Benzovindiflupir - 600 ml ha⁻¹), T14 (Picoxistrobina + Tebuconazol + Mancozeb – 2250 ml ha⁻¹), T15 (Azoxistrobina + Mancozeb + Ciproconazol – 2000 ml ha⁻¹ ¹) e T16 (Azoxistrobina + Mancozeb + Tebuconazol – 2000 ml ha⁻¹).

Foram realizadas aplicações sequencias do mesmo fungicida nos estádios V8, Pré-pendoamento (PP) e 15 dias após o PP, seguindo a dose e o adjuvante recomendado pelo fabricante. A pulverização foi realizada com o uso de um pulverizador de pressão constante, a base de CO₂, com pontas de jato plano padrão (AXI 11002 – Jacto®) e volume de calda de 150 L ha⁻¹. A severidade foi avaliada no momento de cada aplicação e aos 7, 14 e 21 dias após a terceira aplicação dos tratamentos com o auxílio de uma

^{*} Fonte financiadora: Fundação MS – Pesquisa e Difusão de Tecnologia Agropecuária.

⁽¹⁾ Engenheira Agrônoma, Dra., Pesquisadora do setor de Fitopatologia da Fundação MS, Estrada Usina Velha, km 02, Caixa Postal 137, CEP 79150-000. Maracaju – MS. E-mail: anaclaudia@fundacaoms.org.br

⁽²⁾ Técnico Agrícola, Encarregado de pesquisa do setor de Fitopatologia e Nematologia da Fundação MS, Maracaju – MS.

⁽³⁾Bióloga, Auxiliar de Pesquisa do setor de Fitopatologia e Nematologia da Fundação MS, Maracaju - MS

⁽⁴⁾ Engenheiro Agrônomo, MS., Pesquisador do setor de Entomologia e Herbologia da Fundação MS. E-mail: <u>luciano@fundacaoms.org.br</u>

⁽⁵⁾Técnica Agrícola, Encarregada do setor de Entomologia e Herbologia da Fundação MS, Maracaju - MS

⁽⁶⁾ Técnica Agrícola, Auxiliar de pesquisa do setor de Entomologia e Herbologia da Fundação MS, Maracaju - MS

escala diagramática (SANCHES et al., 2011 - https://doi.org/10.1590/S010054052 011000400007) e os dados de severidade foram utilizados para o cálculo da área abaixo da curva de progresso da doença (AACPD) (CAMPBELL & MADDEN, 1990 - New York: John Wiley & Sons, p.532) e eficácia de controle (ABBOTT, 1925 - https://doi.org/10.1093/jee/18.2.265a). Para estimar a produtividade, foram colhidas as espigas de todas as plantas das duas linhas centrais de cada parcela. Os dados obtidos foram submetidos à análise de variância e a média dos tratamentos comparadas pelo teste de Scott-Knott a 5% de probabilidade.

A AACPD apresentou diferença significativa entre os tratamentos, os quais todos diferiram significativamente da Testemunha (Tratamento 1), conforme tabela 1. Os tratamentos 2, 8, 9, 10, 11, 14, 15 e 16 apresentaram a menor AACPD e maior eficácia de controle da mancha branca (91,6, 89,1, 92,4, 92,2, 94,3, 95,3, 94,7 e 95,2%, respectivamente), diferindo significativamente dos demais tratamentos. No que tange a produtividade, todos os tratamentos diferiram significativamente da testemunha, exceto o tratamento 12 (Azoxistrobina + Benzovindiflupir). Em relação a massa de grãos (MMG), nenhum dos tratamentos diferiu significativamente da testemunha.

Com base nos resultados obtidos, conclui-se que nas condições em que o ensaio foi conduzido, o uso de fungicidas proporcionou alta eficácia de controle, sendo os tratamentos 2 (Piraclostrobina + Epoxiconazol), 8 (Trifloxistrobina + Ciproconazol), 9 (Bixafem + Protioconazol + Trifloxistrobina), 10 (Piraclostrobina + Fluxapiroxade), 11 (Epoxiconazol + Fluxapiroxade + Piraclostrobina), 14 (Picoxistrobina + Tebuconazol + Mancozeb), 15 (Azoxistrobina + Mancozeb + Ciproconazol) e 16 (Azoxistrobina + Mancozeb + Tebuconazol) os mais eficazes no controle da mancha branca.

Tabela 1. Área abaixo da curva de progresso da doença, eficácia de controle (%), produtividade (sc/ha) e massa de mil grãos (g) de plantas de milho tratadas com diferentes fungicidas Maracaju (MS), 2021.

т	Tratamentos	AACPD	Eficácia de controle (%)	Produtividade (Kg ha ⁻¹)	MMG (g)
1	Testemunha	191,4 A		5.196,0 A	204,89 A
2	Piraclostrobina + Epoxiconazol	16,1 C	91,6 B	5.892,0 B	203,14 A
3	Trifloxistrobina + Tebuconazol	43,7 B	77,1 A	5.994,0 B	203,48 A
4	Trifloxistrobina + Protioconazol	42,7 B	77,7 A	5.862,0 B	201,41 A
5	Azoxistrobina + Ciproconazol	33,0 B	82,8 A	5.646,0 B	221,35 A
6	Azoxistrobina + Tebuconazol	27,6 B	85,6 A	5.814,0 B	188,21 A
7	Picoxistrobina + Ciproconazol	45,9 B	76,0 A	5.976,0 B	207,52 A
8	Trifloxistrobina + Ciproconazol	20,9 C	89,1 B	5.742,0 B	200,00 A
9	Bixafem + Protioconazol + Trifloxistrobina	14,5 C	92,4 B	6.072,0 B	204,12 A
10	Piraclostrobina + Fluxapiroxade	15,0 C	92,2 B	5.814,0 B	205,2 A
11	Epoxiconazol + Fluxapiroxade + Piraclostrobina	10,9 C	94,3 B	5.652,0 B	208,4 A
12	Azoxistrobina + Benzovindiflupir	46,2 B	75,8 A	5.148,0 A	199,0 A
13	Picoxistrobina + Benzovindiflupir	39,5 B	79,4 A	5.460,0 B	199,2 A
14	Picoxistrobina + Tebuconazol + Mancozeb	9,25 C	95,3 B	5.898,0 B	195,0 A
15	Azoxistrobina + Mancozeb + Ciproconazol	10,13 C	94,7 B	5.532,0 B	205,8 A
16	Azoxistrobina + Mancozeb + Tebuconazol	9,13 C	95,2 B	6.120,0 B	202,8 A
	Fcalc	13,86**	8,414**	1,964*	0,927 ^{ns}
	C.V.	45,38	6,15	7,54	7,12

Médias seguidas pela mesma letra maiúscula na coluna não diferem estatisticamente entre si pelo teste de Scott-Knott a 5% de probabilidade. ^{ns}não significativo, * e ** significativo a 5% e 1% de probabilidade respectivamente.